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Abstract

Types in o-minimal theories

by

Janak Daniel Ramakrishnan

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Thomas Scanlon, Chair

We extend previous work on classifying o-minimal types, and develop several applications.

Marker developed a dichotomy of o-minimal types into “cuts” and “noncuts,” with a further

dichotomy of cuts being either “uniquely” or “non-uniquely realizable.” We use this classi-

fication to extend work by van den Dries and Miller on bounding growth rates of definable

functions in Chapter 3, and work by Marker on constructing certain “small” extensions in

Chapter 4.

We further sub-classify “non-uniquely realizable cuts” into three categories in

Chapter 2, and we give define the notion of a “decreasing” type in Chapter 5, which is

a presentation of a type well-suited for our work. Using this definition, we achieve two re-

sults: in Chapter 5.2, we improve a characterization of definable types in o-minimal theories

given by Marker and Steinhorn, and in Chapter 6 we answer a question of Speissegger’s

about extending a continuous function to the boundary of its domain. As well, in Chapter

5.3, we show how every elementary extension can be presented as decreasing.
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Chapter 1

Background

1.1 Introduction

This paper presents several new results on types in o-minimal structures – ordered

structures in which every definable subset is a finite union of intervals and points. Because

o-minimal structures are not simple (in the terminology of [She80]), the study of o-minimal

types cannot directly avail of many of the techniques developed for types in stable theories.

Work was done on developing analogous techniques – see [Ons06] for a rank that works for

o-minimal structures, or [Dol04], for a complete description of forking in o-minimal theories.

Another promising avenue was that of definable types.

Definition 1.1.1. A type, p ∈ S(M), is A-definable, for A ⊆M , if, for any formula ϕ(x, b),

with b ∈M , there is an A-definable formula dϕ(y), such that ϕ(x, b) ∈ p ⇐⇒ dϕ(b).

The definable 1-types in o-minimal structures were explicitly named in [Mar86],

and a complete description of definable n-types given in [MS94]. The methods of catego-

rization used in [Mar86] can be used to yield several new results. In Chapter 3, we extend

a result of [vdDM96], showing that, for any o-minimal structure, if a function is definable

in an elementary extension, that function is bounded by a function definable in the original

structure. In Chapter 4, we give an example of a pair of o-minimal structures in which the

larger realizes no new “finite” types over the smaller one.

The categorization of [Mar86] can be extended, yielding finer results. In the latter

part of the paper, we define the notion of a decreasing type – one in which each element is

either infinitesimal over all the elements before it, or at the same scale. By improving the
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description of “definable n-type” given in [MS94], we can exploit definability, together with

decreasing types, to prove a number of results about the existence of decreasing types. We

also explore the strong connection between decreasing types and valuations on o-minimal

fields.

Finally, in Chapter 6 we apply decreasing types to answer a question of Patrick

Speissegger’s, giving complete conditions for continuously extending a definable function to

a type “near” a boundary point of the function’s domain. A corollary to this result gives

conditions for extending a definable function continuously onto a (non-definable) curve

whose limit point is not in the function’s domain.

1.2 Preliminaries and Notation

We will always let T denote the complete theory we are currently discussing.

We adopt the usual convention of, given T , fixing a “monster model,” M̄ , saturated of a

sufficient cardinality that all sets and structures we consider can be assumed to be subsets

and elementary substructures of M̄ .

If A is a subset of a topological space, let Ā be the geometric closure of A. Let

I be an ordered set (ordered by <), and let f : I → M̄ be an injective function. Then

we let 〈f(i)〉i∈I denote the sequence indexed by I with f(i appearing before f(j) iff i < j.

Similarly, if a and b are sequences, 〈a, b〉 denotes the sequence that is the concatenation of

a with b, and likewise if aj , j ∈ J , are sequences, with J some ordered set, then 〈aj〉j∈J is

the concatenation of all these sequences.

If c = 〈ci〉i∈I is a sequence, with ordered index set I, then, for i ∈ I, c<i denotes

〈ci〉i∈J , where J = {j | j < i}, with the induced order from I. Similarly for c>i, c≤i, etc. If

C ⊆ M̄n is a set, we define

π≤i(C) := {x ∈ M̄ i | ∃y ∈ M̄n−i(〈x, y〉 ∈ C)}.

Likewise, we define

π>i(C) := {∃y ∈ M̄n−i | x ∈ M̄ i(〈x, y〉 ∈ C)}.

As well, for a ∈ M̄k (k < n), we define

Ca := {y ∈Mn−k | 〈a, y〉 ∈ C}.
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If f is an m+ n-ary function, then, if c ∈ π≤m(dom(f)), fc is the n-ary function,

f(c,−). As a convention, all variables will be assumed to be tuples, unless otherwise stated,

or clear from context. Subscripted variables (when referring to the ith element of a sequence)

are always singletons.

1.3 O-minimal theories

Definition 1.3.1. Let M be a structure in a language, L, containing a symbol < that

is interpreted in M as a transitive, irreflexive, antisymmetric binary relation – an order.

The structure M is o-minimal if, for any formula ϕ(x, a), with a ∈ M a tuple, the set

{b ∈ M |M |= ϕ(b, a)} is equal to a finite union of points and intervals (with endpoints in

M ∪ {±∞}).

Definition 1.3.2. A complete theory, T , is o-minimal if it has an o-minimal model.

All results in this chapter are for a theory, T , that is o-minimal, expanding the

theory of a dense linear order without endpoints. We give the results that we will use in

this work, and refer the reader to [vdD98] for most proofs, and a complete background on o-

minimal structures. Many of these results will be used repeatedly and implicitly throughout

the work.

A fundamental result in o-minimal structures is that of “cell decomposition.” First,

we define a cell.

Definition 1.3.3. (Based on Chapter 3, 2.2 of [vdD98]) A 0-cell is a point. Given an n-cell,

C, an n+ 1-cell has one of two forms:

1. {〈x, r〉 ∈ C × M̄ | f(x) < r < g(x)}, or

2. {〈x, f(x)〉 ∈ C × M̄},

where f and g are definable (over some parameters) n-ary functions whose domains include

C. A cell is an n-cell for some n. We say that a cell is A-definable if all the functions (and

initial point) used to define it are A-definable.

Definition 1.3.4. A cell, C, is regular if, whenever x, y ∈ C, and x and y differ only on the

ith coordinate, then the line connecting x and y is entirely contained in C. It is a version

of convexity, but only coordinate-by-coordinate.
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Theorem 1.3.5. (Chapter 3, 2.19, Exercises 2,4 of [vdD98])

1. Given any definable sets A1, . . . , Ak ⊆ M̄m, for any m, there is a partition of M̄m

into cells that partitions each of A1, . . . , Ak. Moreover, these cells are definable over

the parameters used to define A1, . . . , Ak.

2. For each definable function f : A → M̄ , A ⊆ M̄m, there is a partition of A into

regular cells such that, for each cell B, the restriction f �B : B → M̄ is continuous

and monotonic in each coordinate.

Proof. (Sketch) The standard proof of cell decomposition gives the first claim, and the

second without the assumptions that the cells are regular or that f is monotonic on each

coordinate. However, it is not hard to see that the cells can be made regular, by further

subdividing so that each boundary function is monotonic on the projection of each cell, by

induction. Then they can be futher subdivided to make f monotonic, since, by o-minimality,

f can change its coordinate-by-coordinate behavior only finitely many times on a cell.

This theorem is integral to all we do going forward. We will habitually just say

“taking a cell decomposition” to refer to applying this theorem.

A consequence of cell decomposition, proved during its proof, is the following.

Lemma 1.3.6. Let ϕ(x, y) be a formula, with x a singleton and y a tuple. Then the number

of connected components of ϕ(x, a) is bounded by some k(ϕ), independent of a.

Proof. This is Lemma 2.13, Chapter 3 of [vdD98].

Theorem 1.3.7. The pure theory of real closed fields in the language (+, ·, 0, 1, <) has

quantifier elimination.

Proof. This is [Hod93], Theorem 8.4.4.

Definition 1.3.8. Let dcl(A) denote the definable closure of A – the set of elements that

satisfy ϕ(x), for some A-definable formula A, such that |= ∃!xϕ(x). See [Hod93], 4.1, for

more details.

Lemma 1.3.9. dcl(A) = acl(A).

Proof. Inclusion in one direction is trivial, so it remains to show that, if b ∈ acl(A), then

b ∈ dcl(A). Let b satisfy ϕ(x), and let b1 < . . . < bn be the only elements satisfying acl(A).

Let bi = b. Then the formula ϕ(x) ∧ ∃=i−1y(ϕ(y) ∧ y < x) is satisfied only by b.
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Lemma 1.3.10. Let A be a set, and let c = 〈c1, . . . , cn〉. Let d1, . . . , dm ∈ dcl(Ac). Then

d1, . . . , dm has at most n algebraically independent elements over A.

Proof. We assume that c1, . . . , cn are algebraically independent over A – if not, discard non-

independent elements. We also assume that d1, . . . , dm are algebraically independent over A.

For each di, there is an fi, a ki-ary function, with ki minimal, such that fi(cj(i)1 , . . . , cj(i)ki
) =

di, for j(i)1 < . . . j(i)ki
≤ n. We proceed to exchange ci’s for di’s in stages, constructing a

tuple ei at each stage. Set e0 = c. At stage i, we may reorder ei−1
≥i so that ei−1

i is the cj

with the smallest j still remaining such that, for some l < ki, j = j(i)l. Thus, at stage 1,

we reorder e0 so that e01 = cj(1)1 . By exchange, dcl(Ae0) = dcl(Ad1e
0
>i). Let e1 = 〈d1, e

0
>1〉.

Similarly, at stage i, we know that ei−1
i is the first remaining cj such that fi depends on cj .

Such a cj must exist, else di ∈ dcl(Ad<i), contradiction. Then exchange di for cj . After n

steps, this process yields d1, . . . , dn, independent, with dcl(Ad1 . . . dn) = dcl(Ac). But then

m ≤ n.

Lemma 1.3.11. ([PS86], Theorem 3.3 (forward direction)) Let A = dcl(A) be a set, and

let p ∈ S1(A). Then the formulas in p of the form x > a, x < a, and x = a generate p.

Proof. Let ϕ(x) be any formula. By cell decomposition, there are elements a1, . . . , ak ∈ A

and intervals I1, . . . , Im (with A-definable endpoints), such that

ϕ(x) ⇐⇒





∨

i≤k

x = ai ∨
∨

i≤m

i ∈ Ii



 .

Since p is a complete type, either for some i ≤ k, x = ai is in p, or for some i ≤ m, x ∈ Ii

is in p, or
∨

i≤k x = ai ∨
∨

i≤m i ∈ Ii is in p. The first two possibilities imply ϕ(x) is in p,

while the third implies ϕ(x) is not in p. Thus, ϕ(x)’s membership in p is determined by the

order and equality formulas in p.

Theorem 1.3.12. (Theorem 5.1 of [PS86]) For any set A, there is a structure, M , with

A ⊆ M , and such that, for any structure N with A ⊆ N , M elementarily embeds into

N . The structure M is unique up to isomorphism, and so we denote it Pr(A). If M is a

structure, and A is a set, we may denote Pr(MA) by M(A).

Proof. (Sketch) In most cases, Pr(A) will be dcl(A). The reason is that T will usually

have Skolem functions. We show this by considering any sentence ∃xϕ(x, a), where a is a

tuple. The set satisfying ϕ(x, a) is given by a finite union of points and intervals. We may



6

definably choose a point satisfying ϕ(x, a), if such a point exists in the decomposition, and

even do so uniformly in a. If no such isolated points exist, we must choose a point in the

interior of an interval. In the case where T expands the theory of an ordered group, we

may do that using the average of the endpoints, or a similar means. Thus, we will have

Skolem functions, and hence a prime model via Theorem 3.1.1 of [Hod93], which gives the

Skolem hull – an elementary substructure of M̄ containing A that must be contained in any

other elementary substructure containing A – hence, a prime model. If there is no definable

way to choose a point in the interior of an interval, then an arbitrary choice for each such

homogeneous interval will yield the prime model.

Lemma 1.3.13. Let f be an A-definable function, defined on a neighborhood above a,

(a, b), for some b ∈ dcl(A) ∪ {∞}, with a ∈ dcl(A) ∪ {−∞}. If f is bounded on (a, b),

then limx→a+ f(x) ∈ dcl(A). Similarly if f is defined on a neighborhood below a (with

a ∈ dcl(A) ∪ {∞}).

Proof. The formula

ϕ(y) := ∀c, d (c < y < d⇒ ∃z∀x ∈ (a, z) (f(x) ∈ (c, d)))

shows that, if the limit exists, it is in dcl(A), since ϕ holds on the limit, and ϕ is A-definable.

By [vdD98], Chapter 3, 1.6 (Corollary 1), limx→a+ f(x) exists, though it is possibly infinite.

However, since f is bounded, the limit cannot be infinite, and so we are done.

Lemma 1.3.14. Let S′ ⊆ S be definable sets in M̄m+n, and let A ⊆ M̄m be definable

such that S′
a is open (closed) in Sa for all a ∈ A. Then there is a partition of A into

definable subsets A1, . . . , Ak such that S′ ∩ (Ai × M̄n) is open (closed) in S ∩ (Ai × M̄n),

for i = 1, . . . , k.

Proof. This is [vdD98], Chapter 6, Corollary 2.3.

Lemma 1.3.15. Let S′ be a definable set in M̄m+n. Let S = {x | ∃a ∈ π≤m(S)(x ∈

{a} × Sa)}. Then there is a partition of M̄m into definable subsets A1, . . . , Ak such that

S′ ∩ (Ai × M̄n) = S ∩ (Ai × M̄n), for i = 1, . . . , k. In other words, the fiber of the closure

is the closure of the fiber.

Proof. S and S′ satisfy the conditions of Lemma 1.3.14, with A = M̄m, so we can find

A1, . . . , Ak such that S ∩ (Ai × M̄n) is closed in S′ ∩ (Ai × M̄n), which implies that the two

sets are equal, for each i = 1, . . . , k
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Lemma 1.3.16. Let S ⊆ M̄m+n be definable, f : S → M̄k a locally bounded definable map,

and A ⊆ Rm a definable set such that for all a ∈ A the map fa : Sa → Rk is continuous.

Then there is a partition of A into definable subsets A1, . . . , AM such that each restriction

f �S ∩ (A1 ×Rn) : S ∩ (Ai ×Rn) → Rk

is continuous.

Proof. This is [vdD98], Chapter 6, Corollary 2.4.

Lemma 1.3.17. Let M̄ expand an ordered group. If C ⊆ M̄n is a definable bounded cell,

then π≤n−1(C) = π≤n−1(C).

Proof. This is [vdD98], Chapter 6, 1.7.

Another fundamental result in o-minimal structures is the “trichotomy theorem.”

While we will not use the full result, part of it will be useful.

Definition 1.3.18. An element a is non-trivial if there is a definable open interval I

containing a and a definable continuous function F := I × I → M such that F is strictly

monotone in each variable.

Theorem 1.3.19. ( [PS98], Theorem 1.1) Let M be ω1-saturated. Let a ∈M be non-trivial.

Then there is a convex group G ⊆ M with the graph of multiplication in G given by the

intersection of a definable set with G3.

Definition 1.3.20. Let A be any set. A group chunk on A is given by a binary function,

∗, with domain a subset of A2, such that the following hold.

1. For a, b, c ∈ A, a ∗ (b ∗ c) = (a ∗ b) ∗ c whenever 〈a, b ∗ c〉, 〈a ∗ b, c〉 ∈ dom(∗).

2. There is a unique element, e ∈ A, such that if a ∈ π1(dom(A)), then a ∗ e = e ∗ a = a

(e is the “identity element.”)

3. If a ∈ π1(dom(A)), then there is some a′ such that a ∗ a′ = a′ ∗ a = e.

Note: this definition is independent of o-minimality, our monster model M̄ , etc.

Corollary 1.3.21. Let M be a structure, and let a ∈ M be non-trivial. Then there is

an M -definable binary function, ∗, such that, on some M -definable interval I, about a, ∗

defines a group chunk, with an identity element in M .



8

Proof. We know that, in M̄ , there is a convex group, G, containing a, with the graph of

multiplication in G, denoted ∗, given by an L(M)-formula, ϕ(x, y, z, c), where c ∈ M̄ is a

tuple. We may assume that ϕ(x, y, z, c) defines a function on M̄ , since, for any b, d ∈ G,

there must be an isolated point, g ∈ G, such that ϕ(b, d, g, c) holds, so we may assume that

it is the only such point, and then that ϕ(x, y,−, c) holds for a single point for any x, y ∈ M̄ .

Now, note that the properties of a group chunk are first-order, assuming that the function

giving the group chunk is definable. Thus, since the properties of a group chunk certainly

hold on G, with ∗ the function, the properties of a group chunk must hold on I, for I some

M̄ -definable interval containing a. Then, the sentence

∃w, u1, u2(ϕ(x, y, z, w) defines a group chunk on (u1, u2) ∧ a ∈ (u1, u2))

holds in M̄ , and hence in M . Since the identity element is definable from the group chunk

function, we are done.
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Chapter 2

Classifying O-minimal Types

2.1 Types in Ordered Structures

Cuts and Noncuts

In [Mar86], Dave Marker gave a fundamental classification of o-minimal types. It

is predicated on the following dichotomy of types in densely ordered structures.

Definition 2.1.1. Let M be any densely ordered structure. If A ⊆M and c ∈M , tp(c/A)

is a cut iff there are a, b ∈ dcl(A) such that a < c < b, and for a ∈ dcl(A) with a < c,

there is a′ ∈ dcl(A) with a < a′ < c, and likewise for a > c. Say that tp(c/A) is a noncut

iff it is not algebraic and not a cut. Abusing terminology, we will also refer to c itself as a

cut/noncut over A.

Note that our definition of “cut” is closely related to the traditional definition of

a (Dedekind) cut. In our terminology, a Dedekind cut (A,B) will be a cut if B has no least

element. However, the more ambiguous notion of a “cut” as being any type in the order is

not compatible with our terminology.

While the definition of “noncut” is negative, we can actually give positive condi-

tions:

Lemma 2.1.2. Let p ∈ S(A) be a noncut, with A = dcl(A). Then one of the following is

true:

1. p |= x > a, for all a ∈ A – p is called the noncut near ∞, or ∞−;

2. p |= x < a, for all a ∈ A – p is called the noncut near −∞, or −∞+;
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3. p |= x > b, p |= x < a, for all a > b ∈ A – p is called the noncut below a, or a−; or

4. p |= x < b, p |= x > a, for all a < b ∈ A – p is called the noncut above a, or a+.

Proof. Clear – examine the ways that p can fail to be a cut.

We may refer to the last two kinds of noncuts as noncuts “near” a. By Lemma

1.3.11, the above formulas generate complete types, so over any set of parameters, a+, etc.,

is well-defined.

Lemma 2.1.3. If p ∈ S(A) is a noncut near a ∈ dcl(A), then p is a-definable.

Proof. Let ϕ(x, y) be any formula, with y a tuple. WLOG, assume p is a noncut above a.

The formula

ψ(y) = ∃d > a(∀x ∈ (a, d)(ϕ(x, y)))

holds on b if and only if ϕ(x, b) is in p, and ψ(y) is a-definable.

Lemma 2.1.4. If p ∈ S(A) is a cut, then p is not A-definable.

Proof. We show that if p is A-definable, then p is not a cut. We have the formula x < a.

Since p is definable, there is some A-definable ψ such that ψ(y) holds iff x < y is in p. But

then ψ holds on some initial segment of Pr(A). Let b ∈ Pr(A)∪ {∞} be the right endpoint

of this interval. If b = ∞, then p is the noncut near ∞. If b is not ∞, then there is no b′ < b

such that x < b′ is in p, and there can be no b′ > b such that x > b′ is in p. Thus, p is a

noncut near b, or p is the isolated type that says x = b.

2.2 Properties of Cuts and Noncuts

Henceforth, we restrict to o-minimal structures, and assume that T , our ambient

theory, is o-minimal, expanding the theory of a dense linear order. Note that we may have

further varying assumptions on T , which we will state.

Lemma 2.2.1. Let c realize the type of a cut over A, and d the type of a noncut over

A. Then there is no A-definable function, f , such that f(c) = d (and thus no A-definable

function such that f(d) = c).

Proof. This is Lemma 2.1 and 2.2 of [Mar86].
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Lemma 2.2.2. Let b be a noncut near α over A. Let f be A-definable such that f(b) is a

noncut near β over A. Then f is increasing if b and f(b) are noncuts both above or both

below, and f decreasing otherwise.

Proof. We do the cases where b is a noncut above α – the cases for “below” are analogous.

We know f is non-constant in a neighborhood of b, else f(b) will not be a noncut over A.

Suppose f(b) is a noncut above β. If f is decreasing, then f(α) > f(b). But now there is no

element of dcl(A) between f(α) and f(b), or between f(b) and β, and f(b) /∈ dcl(A). This

contradicts the fact that dcl(A) is a dense linear order. The argument if f(b) is a noncut

below β is similar.

Lemma 2.2.3. (From Lemma 2.2 of [Mar86]) If M ≺ N , with N realizing only cuts over

M , and tp(c/N) is a cut, then N(c) realizes only cuts over M .

Proof. Suppose N(c) realizes a noncut over M . We show that either tp(c/N) is a noncut,

or N realizes a noncut over M . Let f(c) be a noncut near α ∈ M over M , with f an

N -definable function. If c is a noncut over N , then f(c) is not a noncut over N , so there

is some d ∈ N with d between α and f(c). But then d is a noncut near α over M , so N

realizes a noncut over M .

Lemma 2.2.4. If T expands the theory of an ordered field, then all noncuts over a fixed

parameter set are interdefinable.

Proof. See the Example following Definition 2.1 of [Dol04].

Lemma 2.2.5. Let A be a set. If, for any elements a, b, the noncut above a (over Aab) is

interdefinable with the noncut above b, then all elements are non-trivial.

Proof. By interdefinability, there is an A-definable function f , with f(x, b, a) mapping an

interval above a to an interval above b. It is clear that f(x, b, a) must be increasing. If we

let b vary, then it is also clear that f(c,−, a) must be increasing, for some c sufficiently close

to a. Then f(−,−, a) witnesses the non-triviality of a.

Definition 2.2.6. If A has the property of Lemma 2.2.5, then we say that parallel noncuts

are interdefinable over A. Note that, if TA expands the theory of an ordered group, then

parallel noncuts are interdefinable over A.
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Lemma 2.2.7. Let A be a set. Let b, c be any elements. If all the noncuts above and below

b and c, and near ±∞, are interdefinable (over Abc), then, for any B ⊇ A, dcl(B) is dense

without endpoints.

Proof. To show that dcl(B) is dense without endpoints, it suffices to show that dcl(B) is

nonempty, and, given a point, b, there are points b−, b+ ∈ dcl(Ab) with b− < b < b+, and,

given b < c, there is d ∈ (b, c) ∩ dcl(Abc). The argument for all three is the same – namely,

we take an interval, and show that map between the noncut above the left-hand endpoint

and the noncut below the right-hand endpoint yields a point in the interval definable from

A and the endpoints. We apply this to the interval (−∞,∞) to show dcl(B) is nonempty,

to the intervals (b,∞) and (−∞, b) to get b+ and b−, respectively, and to (b, c) to get d. So

let (α, β) be an interval, with α, β ∈ M̄ ∪ {±∞}. By hypothesis, there is an A-definable

function, f , such that limx→α+ f(x, α, β) = β. (If α or β is ±∞, it will not be a parameter

of f .) Then f(−, α, β) is necessarily decreasing on an interval with left endpoint α. If f

stops decreasing at some point between α and β, then that point is Aαβ-definable. If f

does not stop decreasing, then it has a definable infimum (possibly −∞). If that infimum

is less than or equal to α, then there must be a fixed point of f that is greater than α and

less than β, and that fixed point is Aαβ-definable. If the infimum is greater than α, the

infimum itself is our desired element.

Lemma 2.2.8. Let A be a set, and suppose that, for any B ⊇ A, dcl(B) is dense without

endpoints. Then, for any B ⊇ A, Pr(B) = dcl(B) – in particular, TA has Skolem functions.

Proof. It suffices to show that TA has Skolem functions. Let ∃xϕ(x, y) be any L(A)-formula,

x a singleton, such that, for some b a tuple in B, Pr(B) |= ∃xϕ(x, b). Then ϕ(x, b) consists

of a finite union of intervals and points in Pr(B). We may definably restrict the domain

of y in ϕ(x, y) so that the number of intervals and points is constant, and their relative

ordering is always the same. Then, if there are any isolated points in ϕ(x, b), such points

are uniformly A-definable from the tuple y, giving a Skolem function. Otherwise, we may

take a (uniformly definable) interval satisfying ϕ(x, b), (α, β), with α, β ∈ dcl(Ab)∪ {±∞}.

Then, by the fact that dcl(Ab) is dense without endpoints, there must be a point in the

interval that is uniformly Ab-definable, which gives us a Skolem function for ∃xϕ(x, y).

Lemma 2.2.9. Let M be a structure, and assume that all elements are non-trivial and

that TM has Skolem functions. Then we may partition I into finitely many sub-intervals
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(and points) such that, for each subinterval Ii, there is an M -definable binary function with

one parameter, ∗x, such that, for every x ∈ Ii, ∗x defines a group chunk on an interval

containing x.

Proof. For each a ∈ I, we know that, in M̄ , there is a convex group, G, containing a, with

the graph of multiplication in G, denoted ∗, given by an L(M)-formula, ϕ(x, y, z, c), where

c ∈ M̄ is a tuple. We may partition I into finitely many M -definable intervals such that, on

each interval, the L(M) formula giving multiplication is the same – if there were infinitely

many formulas required, by compactness we could find an element in I for which no formula

gave a group chunk. Thus, we may assume that, for all points in I, ϕ(x, y, z, u) gives the

graph of multiplication, for some u a tuple in M̄ .

We may assume that ϕ(x, y, z, c) defines a function on M̄ , since, for any b, d ∈ G,

there must be an isolated point, g ∈ G, such that ϕ(b, d, g, c) holds, so we may assume that

it is the only such point, and then that ϕ(x, y,−, c) holds for a single point for any x, y ∈ M̄ .

Now, note that the properties of a group chunk are first-order, assuming that the function

giving the group chunk is definable. Thus, since the properties of a group chunk certainly

hold on G, with ∗ the function, the properties of a group chunk must hold on I, for I some

M̄ -definable interval containing a. Then, the formula

ψ(a) := ∃w, u1, u2(ϕ(x, y, z, w) defines a group chunk on (u1, u2) ∧ a ∈ (u1, u2))

holds for every a ∈ I. Since TM has Skolem functions, we can find an M -definable function,

f , such that ϕ(x, y, z, f(a)) defines a group chunk on an interval around a.

Lemma 2.2.10. Let all noncuts be interdefinable over a set, A. If a ∈ X \ X, where

X is an A-definable subset of M̄n, then there is an Aa-definable continuous injective map

γ : (0, s) → X, for some s > 0, such that limt→0 γ(t) = a.

Proof. The proof is based on [vdD98], Chapter 6, Corollary 1.5, although the proof there

assumes that T expands the theory of an ordered group.

Since a ∈ X \X, any open set containing a also contains some points of X. For

each coordinate, there are some A-definable functions, h±i (x, y), such that h±i (x, ai) maps

an interval above 0 to an interval above (below) ai. Restrict to an Aa-definable interval

above 0 on which all h±i (−, ai) are continuous. Then, for each ε in this interval, the box

with boundary functions h±i (ε, ai) is open, and thus must contain some point of X. By
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the existence of Skolem functions, there is an Aa-definable function, γ, such that γ(ε) is

such a point in x. Restricting the interval to a smaller neighborhood above 0 so that γ is

continuous and injective, we are done.

Lemma 2.2.11. Let c1, c2 be noncuts over A, near β1, β2 ∈ dcl(A) respectively. If c1 is not a

noncut over c2A, then there is some A-definable function f(x), such that limx→β+

1

f(x) = β2

and c2 lies between f(c1) and β2.

Proof. We assume that c1, c2 are above β1, β2, respectively – the proof is similar for the other

possibilities. Since c1 is a cut over c2A, there is some A-definable g such that β1 < g(c2) < c1.

Since g(c2) cannot be in dcl(A), we must have limx→β+

2

g(x) = β1: if not, there is some A-

definable interval above β2 where β1 < a < g(x), for a fixed a ∈ dcl(A), which is impossible,

since any A-definable interval above β2 contains c2, and β1 < g(c2) < c1 < a for every

a > β1 ∈ dcl(A). Thus, limx→β+

2

g(x) = β1, and as well, g is increasing in a definable

neighborhood of β2 – else we could find an element of dcl(A) between β1 and g(c2). Let

f(x) = g−1(x). Then f(c1) > c2, and moreover limx→β+

1

(f(x)) = β2.

Nonuniquely realizable cuts

[Mar86] further categorizes cuts into two kinds.

Definition 2.2.12. Let p be a cut over A. Say p is uniquely realizable if, for any (some)

c |= p, Pr(A ∪ {c}) has exactly one realization of p. Say p is nonuniquely realizable if it is

not uniquely realizable.

Example 2.2.13. Let M = (Qrc,+, ·, <), the ordered field of algebraic real numbers. Then

tp(π/M) is a uniquely realizable cut, since R, into which Pr(M ∪{π}) certainly embeds, has

only one realization of the type. On the other hand, let ε be an infinitesimal with respect

to Q – in other words, a noncut to the right of 0 over Q, and let M = (Pr(Q ∪ {ε}),+, <),

the ordered group generated by Q ∪ {ε}. Then the type extending the set of formulas

{x > nε | n ∈ N} ∪ {x < 1/n | n ∈ N} is a nonuniquely realizable cut, since, if c realizes it,

so does c+ ε, and c+ ε must be in the prime model, since the prime model is a group.

Lemma 2.2.14. Let c realize the type of a uniquely realizable cut over A, and d the type

of a nonuniquely realizable cut over A. Then there is no A-definable function, f , such that

f(c) = d (and thus no A-definable function such that f(d) = c).
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Proof. This is Lemma 3.6 of [Mar86].

Lemma 2.2.15. Let M be a structure, with every element non-trivial, and with TM having

Skolem functions. Let c realize the type of a uniquely realizable cut over M . Suppose there

is an M -definable interval, I, around c such that all points in I are non-trivial. Then there

is a Pr(M)-definable group chunk that contains c.

Proof. We know that, for every point b ∈ I, there is an Mb-definable group chunk containing

b, by Lemma 2.2.9. Let the upper boundary of this group chunk be given by f(b), where

f is M -definable, and similarly the lower boundary given by g(b), with g M -definable.

Restrict I to a subinterval around c such that both f and g are monotone and continuous.

We may assume that, if x ∈ (g(y), y), then y ∈ (x, f(x)), since we can replace g(y) by

max(g(y), inf{x | f(x) > y}), with the inf set non-empty, since f would then not be

continuous or not be monotone at y. Suppose that, for any b ∈ M with b < c, we have

f(b) < c. Since g(c) < c, and tp(g(c)/M) 6= tp(c/M) (since tp(c/M) is uniquely realizable),

we know that there is some b ∈M with b ∈ (g(c), c). But then f(b) > c, contradiction.

Lemma 2.2.16. Let M be a structure, let c realize the type of a uniquely realizable cut over

M , and let f be an M -definable function. Then, for any a > f(c) with a ∈ M(c), there is

c′ ∈M such that f(c′) ∈ [f(c), a), and similarly if a < f(c).

Proof. If f is constant in a neighborhood of c, then the lemma is trivial, so assume not. We

know that tp(f(c)/M) is a uniquely realizable cut, since it is interdefinable with c over M .

Choose I, a M -definable interval around c such that f is monotonic and continuous on I.

Let a ∈ M(c) with a > c. Since tp(c/M) is uniquely realizable, there is some a′ ∈ M with

c < a′ < a. Then f−1(a′) is our desired c′. The case a < f(c) is precisely analogous.

Lemma 2.2.17. Let c realize the type of a nonuniquely realizable cut over A, and let d

be any element. Then c is a nonuniquely realizable cut over Pr(Ad) iff Pr(Ad) has no

realizations of tp(c/A).

Proof. First, note that tp(c/Ad) must be a cut, since otherwise Pr(Ad) would have to realize

tp(c/A). As well, we know that, for some A-definable function, f , tp(f(c)/A) = tp(c/A),

with f(c) 6= c. Similarly, tp(f(c)/Ad) must be the same as tp(c/A), since otherwise, again,

Pr(Ad) would realize tp(c/A). Thus, f continues to witness that c realizes a nonuniquely

realizable cut.
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When is a cut nonuniquely realizable? In order to have multiple realizations in the

prime model, there must be a function (definable over the base set), which, when applied

to a realization of the cut gives another realization of the cut. In this case, we say that the

function witnesses the nonuniquely realizableness of the cut. In many cases, we need only

consider a restricted set of potential witness functions:

Lemma 2.2.18. Let T expand the theory of an ordered group, and A be a set. If tp(c/A) is

a nonuniquely realizable cut, then, for some A-definable ρ, tp(c/A) = tp(c+ ρ/A). We will

use ρ(c,A) to denote such an element. Note that, despite this notation, ρ(c,A) is definable

just from A.

Proof. Since tp(c/A) is a nonuniquely realizable cut, dcl(cA) includes another realization

of tp(c/A) besides c. Let f(c) be that realization, where f is A-definable. We may assume

that f is monotonic – increasing, otherwise consider f−1 – and has no fixed points on an

A-definable interval around c. Shrinking the interval further, we can guarantee that there

are no fixed points of f in the closure of the interval. Then we can consider the function

f(x) − x on the interval. It has a non-zero infimum, which is A-definable, since f is.

Call this infimum ρ. Then we can replace the function f(x) by the function x + ρ. Since

c < c+ ρ ≤ f(c), we have tp(c+ ρ/A) = tp(c/A).

Thus, whenever our theory expands that of an ordered group, we may take the

witness function (to a cut being nonuniquely realizable) to be addition by a definable con-

stant.

Lemma 2.2.19. Let T expand the theory of an ordered group. Let B be a set, A ⊂ B. If

tp(c/B) is a nonuniquely realizable cut, but tp(c/A) is not, then some element of dcl(B) is

a noncut over A.

Proof. Note that if tp(c/A) is a noncut, then we are done, since dcl(B) must include an

element in that type in order to make tp(c/B) a cut. Thus, we may assume tp(c/A) is a

uniquely realizable cut. Since tp(c/B) is a nonuniquely realizable cut, we have some B-

definable positive ρ such that tp(c+ρ/B) = tp(c/B), and, a fortiori, tp(c+ρ/A) = tp(c/A).

But then ρ is not definable in A, and moreover, no element in (0, ρ) can be definable in A,

so ρ is a noncut over A.
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Scales

We can actually further categorize nonuniquely realizable cuts.

Definition 2.2.20. Let A ⊆ B be sets. Let p be a nonuniquely realizable cut over B, with

c |= p. We say that p is in scale on A if, for some A-definable function, f(x, y), with x

a tuple and y a singleton, and some tuple b ∈ B, f(b,dcl(A)) is cofinal and coinitial at c

in dcl(B). Say tp(c/B) is near scale on A if there is a function and tuple, as before, such

that f(b,dcl(A)) is cofinal (or coinitial) at c in dcl(B). Say tp(c/B) is out of scale on A

otherwise.

Example 2.2.21. Let T be the theory of a real closed field, let A = Qrc, and let B = A(ε),

where ε is a noncut above 0 over A. Let p = tp(πε/B). Then p is in scale on A, since the

function f(ε, y) := yε is cofinal and coinitial at πε in B.

Now, let A = R, with B = A(ε). Let q(x) ∈ S1(B) be the complete type saying

that x < aε, for a ∈ A, but x > εd, for d ∈ Q, d > 1. It is not hard to see that q is consistent.

(See Example 6.1.5 for the details.) Then q is near scale on A, since the same f is coinitial

at any realization of q, but there is no cofinal function. Finally, let r = tp(ε
√

2/B) – define

this by expanding our language to include exponentiation, taking the prime model of Aε

in the new language, yielding the element ε
√

2, then taking the type of this element in the

reduct to the original language. Then r is out of scale on A.

Lemma 2.2.22. Let p ∈ S1(B), with c |= p, and A ⊆ B. If f(x) is a B-definable function

such that f(dcl(A)) is cofinal (coinitial) at c in dcl(B), and A ⊆ D ⊆ B, then f(dcl(D)) is

cofinal (coinitial) at c in dcl(B).

Proof. Trivial.

Corollary 2.2.23. Let p ∈ S1(B), with c |= p, and A ⊆ D ⊆ B. If p is in scale on A, it is

in scale on D. If p is near scale on A, it is not out of scale on D.

Lemma 2.2.24. Let T expand the theory of an ordered group. If p is a nonuniquely re-

alizable cut over B, c |= p, and Pr(Bc) realizes no noncuts over A, then p is in scale on

A.

Proof. Let d be any element of dcl(B), WLOG greater than c. If (c, d) ∩ dcl(A) = ∅, then

by definition d is a noncut above c over A, and, after subtraction by c, d − c is a noncut
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above 0. Since Pr(Bc) realizes no noncuts, (c, d)∩dcl(A) is not empty, so dcl(A) is coinitial

at c. Thus, with f the identity, f(dcl(A)) is coinitial at c, and by the symmetric argument,

cofinal at c, so p is in scale on A.
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Chapter 3

Bounding Growth Rates

3.1 Previous Work

A good deal of work has been done on various bounds of growth rates of functions

definable in o-minimal structures.1 For instance, [MS98] and [Mil96] give strong bounds on

the growth rates of functions definable in o-minimal structures extending groups and fields,

respectively. [MS98] shows that, if M is an o-minimal expansion of an ordered group, then

either M defines an operation that turns M into a real closed field, or every M -definable

function is bounded by an automorphism of M – bounded means that, for sufficiently

large values, the automorphism is greater than the function. [Mil96] shows that, if M is

an o-minimal expansion of an ordered field, then either every definable function is power-

bounded, or the field defines the exponential.

Here, we focus on a result of Miller and van den Dries. In [vdDM96], they show

that, given an o-minimal structure expanding a field, the growth of a function definable in

any elementary extension of a structure is bounded by a function definable in the original

structure. We give a version of their proof:

Proposition 3.1.1. Let M be an o-minimal structure expanding a real closed field, and let

N elementarily extend M , with f an N -definable unary function. Then there exists g, an

M -definable unary function, such that, for sufficiently large x, f(x) ≤ g(x).

Proof. Note that, if f is N -definable, we may write it as f(x, b), where b is a finite tuple

1This topic was originally brought to my attention by [Pet07], in which the growth rates of definable
functions are used to define a useful concept called “stationarity,” when dealing with groups definable in an
o-minimal structure.
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from N and f(x, y) is M -definable. Thus, we may assume that N = M(b), and thus that

N is a finitely generated extension of M . We can then reduce to the case where N is an

extension by a single element over M (for the general case, we just apply the result for

a single element repeatedly). Thus, we have an M -definable binary function f(y, x), and

a ∈ N \ M . If tp(a/M) is a cut, then we can restrict to a cell containing a in its first

coordinate and unbounded in its second coordinate on which f(y, x) is monotonic. Then if

we choose d1 < a < d2 with d1, d2 in the cell’s first coordinate, one of f(d1, x) and f(d2, x)

must bound f(a, x), since f(−, x) is monotonic.

Thus, we may assume tp(a/M) is a noncut. Since T expands the theory of an

ordered field, we may assume that a is a noncut near +∞. Let C be the M -definable cell as

above, such that f(y, x) is monotonic in each coordinate and π1(C) contains a. Note that

C must be increasing in its first coordinate. Let k(y) give the lower boundary of the second

coordinate of C in terms of the first. Note that, if sup{f(y, x) | k(y) < x} is unbounded for

some x, then, since this property is first-order, it is unbounded for some b ∈ M , and thus

f(y, b) is our desired function. Otherwise, let g(x) = sup{f(y, x) | k(y) < x}. Then, for x

with x > k(a), g(x) ≥ f(a, x).

3.2 Generalizing

While the use of the field structure above is subtle, it is actually a non-trivial

use. The proof works because both arguments of f are coming from the same type – the

noncut near ∞. If the two are different noncut types, it is not clear that the same method

of bounding the set of which g is the sup will work, and so, without a field structure, the

proposition remains to be shown. Fortunately, the purported existence of a fast-growing

function actually implies enough structure for our purposes.

Notation 3.2.1. For this theorem, we adopt some terminology to ease exposition. “P (y) for

y sufficiently close to b” means that there is an interval with endpoint b such that P holds

on the interval, with that interval lying to a consistently-chosen side of b.

Theorem 3.2.2. If M is an o-minimal structure, N � M , and f(a, y) is an M -definable

function (with a a tuple from N) such that limy→b− f(a, y) = c, for some b ∈ M ∪ {∞},

c ∈ M ∪ {±∞}, then there is an M -definable g such that limy→b− g(y) = c, and for y

sufficiently close to b, g(y) ∈ [f(y), c) (or (c, f(y)]). Similarly if f ’s domain is to the right
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of b (and b ∈M ∪ {−∞}).

Proof. Fix N , f , a, b, c satisfying the conditions of the lemma. We assume that f(a, y)

approaches c from below, and that the domain of f lies to the left of b. These assumptions

do not affect the proof, but allow us to avoid considering all four cases.

First, assume that f(−, y) is constant at a for y sufficiently close to b. Then there

is an My-definable interval, Iy, such that f(−, y) is constant on Iy for y sufficiently close

to b. But then the value of f(−, y) on Iy is My-definable, say by g(y), so we are done.

Thus, we may assume that f(−, y) is not constant at a. We suppose h(y) /∈

(f(a, y), c) for every M -definable h and y sufficiently close to b and prove the proposition,

yielding a contradiction. For notation, let p ∈ S1(M) be the noncut below c. We can use cell

decomposition and assume that f is monotone in x and increasing in y on its two-dimensional

domain cell, C, which we can assume is defined by {〈x, y〉 | x ∈ (d1, d2) ∧ b > y > k(x)},

for some M -definable function k and d1, d2 ∈ M ∪ {±∞} (with d1 < a < d2). We may

also assume that f(C) < c. We can reduce this proof to the preceding one by proving the

following.

Claim 3.2.3. tp(a/M) and p are interdefinable.

Proof. tp(a/M) is a noncut, by the same argument as for the previous proposition. WLOG,

say a is a noncut above. By shrinking C, we may assume that a is a noncut above c1 ∈

M ∪ {−∞}. As the underlying order on M is dense, we know that there is e ∈ M with

c1 < a < e < c2. It is then clear that, for y sufficiently close to b, f(−, y) is decreasing, else

f(e, y) ∈ (f(a, y), c), since f(−, y) is monotone.

If k(a) |= p, then k witnesses the interdefinability of tp(a) and p. Thus, we can

assume that k(x) < m ∈ tp(a/M), for some m ∈ M , m < c. Then, shrinking c2 if

necessary, we may also assume that m ≥ sup{k(x) | x ∈ (c1, c2)}. Now consider the formula

ϕ(y) := ∀z∃x ∈ (c1, c2)(f(x, y) ∈ (z, c) ∧ 〈x, y〉 ∈ C). Assume that, for y sufficiently close

to b, ϕ(y) does not hold. Then, for y sufficiently close to b, the set {f(x, y) | x ∈ (c1, c2)}

has a right endpoint, since it is bounded on the right – note that by our assumption on C,

this endpoint is less than c. Let z(y) be this (uniformly My-definable) endpoint. But then

z(y) ∈ (f(a, y), c), contradicting our assumption that no M -definable function is greater

than or equal to f(a, y) for y sufficiently close to b. Thus, ϕ(y) does hold for y sufficiently

close to b. We can then fix y0 ∈ (m, c) in M such that ϕ(y0) holds, and we have an
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M -definable map, f(−, y0). Now we show f(a, y0) |= p. For any e ∈ M , we can find

d ∈ (c1, c2) ∩M such that f(d, y0) > e, by ϕ. Since d > a (else a would not be a noncut

near c1) and f(−, y0) is decreasing, f(a, y0) > f(d, y0) > e. Thus, f(a, y0) |= p, and so we

have an M -definable map between tp(a/M) and p.

Now the proof proceeds as before. We have a function, f(a,−), with tp(a/M)

the noncut below c. If sup{f(y, x) | k(y) < x < b} has limit c for some x, then, since

this property is first order, it has limit c for some d ∈ M , and thus f(y, d) is our desired

function. Otherwise, let g(x) = sup{f(y, x) | k(y) < x < b}. Then, for x with x ∈ (k(a), b),

g(x) ∈ [f(a, x), c).
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Chapter 4

Maximal Small Extensions

4.1 Introduction

Marker, in [Mar86], defines:

Definition 4.1.1. Let M ≺ N . Say N is a small extension of M if, for any a ∈ N , finite

A ⊂M , tp(a/A) is realized in M .

The question is asked, if an o-minimal M does not have unboundedly large small

extensions, what is the largest cardinality small extension that M can have?

In [Mar86], it is shown that any such maximal small extension can have cardi-

nality at most 2|M |. The argument uses the fact that there are at most 2|M | types over

M . Since there are actually at most Ded(|M |) types over M , where Ded(α) = sup{|Q̄| :

Q a linear order, |Q| ≤ α}, [Mar86]’s argument shows that a maximal small extension must

have cardinality at most Ded(|M |).

Most examples of o-minimal structures either have no small extensions or un-

boundedly many – in a pure dense linear order, every extension is small, since any type

over finitely many elements is realized – the model is ℵ0-saturated. In the rationals as an

ordered group, no extension is small, since every element is ∅-definable, so any unrealized

type was unrealized over ∅.

In this chapter, we use different notation from the rest of the work. Variables

indicate elements of structures, although those elements are often themselves sequences.
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4.2 M-Finite Types

[She78] defines the following:

Definition 4.2.1. p ∈ S(A) is a Fs
λ-type if |A| < λ. Say p ∈ S(A) is a Fs

λ-type if, for some

B ⊆ A, |B| < λ, there is q ∈ S(B) such that q ` p.

If p ∈ S(M), A ⊆M , p is a Fs
ℵ0

-type witnessed by some finite subset of A, we will

call p A-finite. In other words,

Definition 4.2.2. Given a model, M , and a set, A ⊆M , let a type p ∈ S1(M) be A-finite

iff for some finite b̄ ∈ A, p � b̄ generates p. Say p is almost A-finite iff for some type, q,

definable from p, q is A-finite.

Example 4.2.3. If M = (Q,+, <, 0), N = M(π), and p ∈ S1(N) is a noncut above π, then

p itself is not M -finite, but, if c |= p, c− π is M -finite.

Shelah’s interest in F-types was in constructing prime models, so in realizing only

F-types. Here, the opposite is true: if an extension is small, then it realizes no M -finite

types.

Since order-type implies type in o-minimal theories, A-finiteness has an inter-

pretation in the order – dcl(b̄) is dense around p, for b̄ ⊆ A the witness to A-finiteness.

Considering this interpretation, we see that if M is o-minimal, realizing no M -finite types

implies that an extension is small.

4.3 Existence of Maximal Small Extensions

Theorem 4.3.1. For every α, there is an o-minimal structure, M , |M | = α, with small

extensions but not unboundedly large small extensions. Moreover, if α is of the form β<λ,

for some λ, a small extension can be found of cardinality βλ.

Proof. We give a construction of models M and N , with M ≺ N , and N a maximal small

extension of M . We then verify the sizes of M and N .

Let G be a divisible ordered abelian group, λ an ordinal, Q a dense divisible proper

subgroup of G. Let Q′ = G \Q.

Let M = G<λ, ordered lexicographically and equipped with group structure

component-wise. Let our language be that of an ordered group, extended by constants

for every element of Q<λ. We will build N in stages.
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• Let M0 = M .

• Given Mi, choose a ∈ Gλ such that any b ∈ dcl(aMi) \Mi has cofinally many compo-

nents in Q′. Let Mi+1 = Mi(a). Take unions at limits.

This construction must halt at some point, since there are ≤ |G|λ elements to add.

Let the union of the Mis be N .

The original M is o-minimal, since it is a divisible ordered abelian group, and each

Mi and N is an elementary extension, since it is also a divisible ordered abelian group, and

this theory has quantifier elimination.

It remains to be shown that N is a small extension of M , and that there is no

larger small extension of M . In fact, we show that every small extension of M comes from

this type of construction.

Notation: we use M ′ to denote an arbitrary Mi or N . As well, for α < λ, a[α] is

the αth component of a, and a�α = 〈a[i]〉i<α.

Lemma 4.3.2. Every noncut over M ′ is almost M -finite.

Proof. Let p be a noncut over M ′. Assume p is of the form {a < x}∪{x < e | e ∈M ′, e > a}.

(The case x < a is precisely symmetric. If p is near ±∞, then p is M -finite, since Q<λ is

cofinal in Gλ.) Let d be any realization of p. The type of d − a over M ′ is generated by

{0 < x} ∪ {x < e | e > 0} – the noncut near 0. Given any e > 0 ∈ M ′, let α be the first

index at which e[α] 6= 0. Let c ∈ Qα+1 be such that c[i] = 0 for i < α, and 0 < c[α] < e[α].

We know 0 < c < e. Thus, x < c implies x < e, and d− a < c, so tp(d− a/M ′) is generated

by tp(d− a).

Definition 4.3.3. If p ∈ S1(M
′) is a cut, and there is some α < λ such that, for a, b ∈M ′,

a�α = b�α implies x < a ∈ p ⇐⇒ x < b ∈ p, then p is reducible.

Note that if p is reducible, then it is not uniquely realizable.

Lemma 4.3.4. If p is reducible, then p is M -finite.

Proof. Let α be the least such in the definition of reducible. For each β < α, we can find

aβ ∈M , a+
β , a

−
β extending aβ such that lh(aβ) = β, x < a+

β ∈ p, and x > a−β ∈ p. It is easy

to see that β < β′ implies aβ is an initial segment of aβ′ . Let a =
⋃

β<α aβ , so a ∈M .
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Let d realize p, let e be any element of M ′. WLOG, assume e > d. We show e > d

is implied by tp(d/a).

Case 1: e�α 6= a�α. Then e and a differ at some coordinate β < α, so e[β] > a[β].

If a > d, we are done. Otherwise, by density of Q, we can find c ∈ Qβ+1 with

c[i] = 0 for i < β, and a[β] < a[β] + c[β] < e[β]. Again, it is clear that a+ c > d, so we are

done for this case.

Case 2: e �α = a �α. Since we assume e > d, we also have a > d, by definition of

p. Let β ≥ α be the first coordinate at or past α at which e is not 0 (otherwise e = a). If

e[β] > 0, we are done, so let e[β] < 0. Choose c ∈ Qβ+1 such that c[i] = 0 for i < β, and

c[β] < e[β] < 0. Then c + a < e, but since (c + a) � α = e � α, c + a > d, which implies

e > d.

Lemma 4.3.5. If p ∈ S1(M
′) is a non-reducible cut, then for some a ∈ Gλ, tp(a/M ′) = p.

Proof. For each α < λ, by non-reducibility, there are a−α , a
+
α ∈M ′ such that a−α �α = a+

α �α,

but a−α < x < a+
α ∈ p.

Let aα = a−α �α. It is easy to check that α < α′ implies aα ⊂ aα′ .

Let a =
⋃

α<λ aα. If a < e, then at some component, say α, a[α] < e[α]. But

a�α+ 1 = a+
α+1, so a+

α+1 < e, so x < e ∈ p.

The case e < a is symmetric. Thus, tp(a/M ′) = p.

Lemma 4.3.6. Let d ∈ Gλ realize a non-reducible cut over M ′ without cofinally many

components in Q′. Then tp(d/M ′) is M -finite.

Proof. For some m < λ, b = d �m has all the components of d in Q′. Note that b ∈ M .

Given any e ∈ M ′, if x < e is in tp(d/M ′), then let n be the first index at which d and e

differ.

If n < m, let c ∈ Qn+1 be such that c[i] = 0 for i < n, and 0 < c[n] < e[n] − b[n].

Then x < b+ c is in tp(d/b), and b+ c < e.

If n ≥ m, then choose c ∈ Qn+1 such that c[i] = 0 for i < m, c[i] = d[i] for

m ≤ i < n, and d[n] < c[n] < e[n]. Then x < b+ c is in tp(d/b) and b+ c < e.

The e < x case is symmetric.

Lemma 4.3.7. If d ∈ Gλ \M ′ has cofinally many Q′ components, then tp(d/M ′) is not

M -finite. Thus, if every b ∈ dcl(dM ′) \M ′ has cofinally many components in Q′, then d is

not almost M -finite.
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Proof. Assume for a contradiction that tp(d/M ′) is M -finite. Let b̄ = (b1, . . . , bm) witness

this, of minimal length (as a tuple).

For any a ∈ M ′, we can find f(b̄), with f ∅-definable, such that f(b̄) lies between

d and a. Considering d� i, for i < λ, we can find {fi(b̄)}i<λ with fi(b̄)� i = d� i.

By q.e. for divisible ordered abelian groups, we know that each fi(b̄) is an affine

linear combination (with rational coefficients) of the bj’s, with the affine part given by

c ∈ Q<λ. If we take α = max(lh(bj) | j ≤ m), then for any β, fβ(b̄) can have no Q′

components past the αth one. But this is clearly impossible.

This completes our proof that N is a maximal small extension of M . We know

that N is a proper extension of M , since any element with cofinal Q′ components can be

adjoined to form M1. It remains to determine its size. We lose nothing by restricting to

the case where λ is an infinite cardinal.

Any element of dcl(Mia)\Mi can be written as q(a+ b), where q ∈ Q, and b ∈Mi.

Since a + b has cofinal Q′ components iff q(a + b) does, we need only consider a + b, for

b ∈Mi.

We can then rephrase in the terminology of vector spaces: M is a subspace of

Gλ as a Q-vector space. We wish to find linearly independent {ai}i<β ∈ Gλ such that

(M +Qλ) ⊕ span({ai}i<β) = Gλ.

Let W be a subgroup of G such that G = Q ⊕ W . Let γ = dimW . Then

Gλ = Qλ⊕W λ, and dimW λ = (γ+1)λ. Moreover, we can write W λ = W<λ⊕X, for some

X, and M +Qλ = W<λ +Qλ. Thus, β = dimX.

Claim 4.3.8. dimX = γλ.

Proof. We construct a set of independent (even including W<λ) elements of W λ, with size

γλ, each of length λ, showing that dimX ≥ γλ, which is enough.

Since λ × λ = λ, we can find λ disjoint subsets of λ of length λ (necessarily

cofinal). Let {Xi | i < λ} be the characteristic functions of these subsets – each Xi is a

binary sequence of length λ.

Since dimW = γ, it has a basis of size γ, {bi}i<γ . For b ∈ W , let bXi denote the

element of W λ obtained by replacing each 1 in the sequence Xi by b.

For f ∈ W λ, let Af =
∑

i<λ f(i)Xi. This sum is well-defined, because no two

Xis are non-zero on the same component. We know that there is a basis of W λ of size γλ,
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say {fi}i<γλ . Denote Afi
by Ai. We show that {Ai | i < γλ} is linearly independent and

its span is disjoint from W<λ \ {0}. WLOG, it is enough to show that no non-zero linear

combination of A1, . . . , An is in W<λ.

Suppose that q1A1 + . . . + qnAn = c, where qi ∈ Q, c ∈ W<λ. This then implies

that
∑

i<λ(
∑

j≤n qjfj(i))Xi = c. If k, l ∈ Xi, then it is clear that the left-hand side has the

same value at its k and l component, so in fact c = 0 (choose k < lh(c) < l). But this means

precisely
∑

j≤n qjfj = 0, and so qj = 0, j ≤ n, and hence the Ais are linearly independent.

Now we have that, for W such that G = Q⊕W with dimW = γ, |N | = |M |+ γλ.

For any α, an elementary compactness argument shows there exist G and Q such

that |G| = |W | = α, so we can take γ = |G|, and so |N | = γλ.

When λ = ω, G = Qrc, and Q = Q, then |M | = ℵ0 and |N | = 2ℵ0 : the bound is

as sharp as possible. In general, we can take G to have cardinality α, and λ to be ω. Then

|M | = α. However, while N exists, it is possible that |N | = |M |.
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Chapter 5

Decreasing Types

5.1 Definition and Basic Properties

Given an n-type, the ordering of the variables can affect the type of each variable

over the preceding one. For instance, consider the type of (π, ε) over M = (Qrc,+, ·, <),

where ε is an infinitesimal. We have tp(π/M) is a uniquely realizable cut, while tp(ε/πM)

is a noncut. However, if we consider the elements in reverse order, tp(ε/M) is still a noncut,

but now tp(π/Mε) is a nonuniquely realizable cut. We wish to fix a class of orderings of p’s

coordinates that will provide some predictability in the cuts and noncuts.

Convention 5.1.1. In this chapter, we will assume that T is such that all noncuts are

interdefinable over the empty set, except where otherwise noted. By Lemma 2.2.7, this

implies that there is at least one ∅-definable element. As well, by Lemma 2.2.5, around this

∅-definable element is an ∅-definable group chunk, with an ∅-definable identity element. Let

“0” denote some such ∅-definable element such that there exists an ∅-definable group chunk

containing it, and in which it is the identity element.

We begin by defining a partial ordering that we will use henceforth.

Definition 5.1.2. Let A be a set. Define a ≺A b iff there exists a′ ∈ dcl(aA) such that

a′ > 0, and (0, a′) ∩ dcl(bA) = ∅. Define a ∼A b if a 6≺A b and b 6≺A a. Finally, let a -A b if

a ∼A b or a ≺A b.

Lemma 5.1.3. ∼A is an equivalence relation, and ≺A totally orders the ∼A-classes.

Proof. It is trivial to see that ∼A is an equivalence relation – transitivity is true because



30

coinitiality (near 0) is transitive. Similarly, ≺A totally orders the ∼A-classes because “coini-

tiality” totally orders sets, up to coinitiality equivalence.

Lemma 5.1.4. Let A be a set, and suppose that a, b are noncuts near α ∈ dcl(A)∪ {±∞}.

Then, if a ∈ (α, b) (or a ∈ (b, α), if b > α), a -A b.

Proof. We assume b > α for simplicity. Let c ∈ dcl(bA). If c is not a noncut above 0 over

A, then it does not pose a problem, so we may assume that c is a noncut above 0 over

A. We may write c = f(b), where f is A-definable, and f is necessarily non-constant in

a neighborhood above α. By Lemma 2.2.2, f is increasing, so f(a) < f(b) = c. Thus, no

element of dcl(bA) is a noncut near 0 over dcl(aA), showing that a -A b.

Lemma 5.1.5. Let A ⊂ B be sets, and let c, d be noncuts above 0 over B, and let c ∼B d.

Then c ∼A d.

Proof. Suppose not. WLOG, assume c < d. We know that both c and d are noncuts above

0 over A. Then, by Lemma 5.1.4, c -A d. If c ≺A d, then for some A-definable function, f ,

f(c) is a noncut above 0 over Ad. Considering f(dcl(Ad)), we see that c is a noncut above

0 over Ad. Since c is not a noncut above 0 over Bd, Pr(Bd) must realize a noncut above

0 over Ad. Let g(d) be such a noncut, with g a B-definable function. But we know, by

Theorem 3.2.2, that there is an A-definable function, h, such that, for sufficiently small x,

0 < h(x) < g(x). Since d is a noncut near 0 over both B and A, d is certainly sufficiently

small, so h(d) < g(d). But then h(d) < c, contradiction.

Definition 5.1.6. If A ⊂ B, and b is an element, we say that b is ≺A-maximal over B if

b %A c for every c ∈ B \ A.. Similarly for strictly ≺A-maximal, and for -minimal. Given a

sequence, c = 〈ci〉i∈I , with I an ordered set, and J v I, we say that b is J-maximal if b is

≺c≤J
-maximal over c. Similarly for strictly J-maximal, and for -minimal.

Lemma 5.1.7. Let A be a set, and let b realize a cut over A. Then b is ≺A-maximal over

B, for any set B.

Proof. Note that dcl(Ab) does not realize a noncut above 0 over A, since b is a cut. Thus,

dcl(A) is coinitial at 0 in dcl(Ab). Therefore, since, for any c ∈ B, dcl(Ac) ⊇ dcl(A), we

can never have (0, a) ∩ dcl(Ac) = ∅ for any a ∈ dcl(Ab).

Lemma 5.1.8. Let A ⊆ B be sets, and suppose that tp(b/B) is a noncut near some element

of dcl(A) ∪ {±∞}. Then b is strictly ≺A-minimal over B.
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Proof. By assumption of interdefinability of noncuts over ∅, we know that there is an α-

definable function sending b to a noncut above 0 over B, which suffices.

Lemma 5.1.9. Let A ⊂ B be sets, and let b be a strictly ≺A-maximal element over B.

Then b is not a noncut near any a ∈ dcl(B) \ dcl(A) over Aa.

Proof. Let N = dcl(B), M = dcl(A). Suppose not, and let a ∈ N \M be an element near

which b is a noncut over Ma. We show that a ∼M b, contradicting b’s strict maximality.

If b is a cut over M , then a is also a cut over M , contradicting strict maximality, so we

may assume that b is a noncut over M . Let f(b) be a noncut above 0 over M , with f an

M -definable function non-constant in a neighborhood of b. If some element of M(a) lies

between f(a) and f(b), f−1 of that element would lie between a and b, so f(b) is still a

noncut near f(a) over Ma, so we may replace b by f(b) and a by f(a), and assume that a

is a noncut above 0 over M and b is a noncut above a over Ma (and hence a noncut above

0 over M). We know that (0, a) must have an element of dcl(Ma) in it, say f(a), where f

is M -definable. The function f must be increasing in a neighborhood of 0, with f(x) < x,

else a could not be a noncut near 0. Thus, f(b) ∈ (0, b). If f(b) > a, then f−1(a) < b. But

then b cannot be a noncut near a over Ma, since f−1(a) ∈ M(a). Thus, f(b) < a. Thus,

by Lemma 5.1.4, b -M a, contradicting strict maximality of b.

Lemma 5.1.10. Let A ⊆ B be sets, and let b be strictly ≺A-maximal over B. Then b is

not a noncut over C, for any A ⊂ C ⊆ B.

Proof. By Lemma 5.1.9, we know that, for any such C, b is not a noncut near an element

of dcl(C) \ dcl(A), so b would have to be a noncut near an element of dcl(A). But then b

would not be strictly ≺A-maximal over C, by Lemma 5.1.8.

Lemma 5.1.11. Let A ⊂ B, assume dcl(B) realizes no cuts over A, and let c be an element,

with tp(c/B) near scale on A. Then dcl(Bc) contains an element that is strictly maximal

in the ≺A-ordering over dcl(B) \ dcl(A).

Proof. Since tp(c/B) is near scale on A, there is some B-definable function, f , such that

f(dcl(A)) is (WLOG) cofinal at c in dcl(B). If f has a constant value below c, then c must

be a noncut over B near this constant value, contradicting the fact that it is a nonuniquely

realizable cut. Thus, f is not constant, and so must have image including c. Consider

f−1(c). If tp(f−1(c)/A) is a cut, then we may take b an element of B such that b > c
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and f−1 is continuous and monotonic on an interval containing (c, b). But then, since

tp(f−1(c)/A) = tp(f−1(b)/A), we have that f−1(b) is a cut over A, but this contradicts

our assumption that dcl(B) realizes no cuts over A. Thus, f−1(c) is a noncut over A. We

may assume that it is a noncut above 0. I claim that c′ = f−1(c) is strictly maximal in

the ≺A-ordering over dcl(B) \ dcl(A). Suppose not, so let b ∈ dcl(B) \ dcl(A) be such that

b %A c′. Since dcl(B) realizes no cuts over A, b is a noncut over A. Since b %A c′, there is

some A-definable function, g, such that g(b) is a noncut above 0 over A, but g(b) > c′ > 0.

Replace b by g(b). But then f(g(b)) contradicts that f(A) is cofinal at c in dcl(B).

Lemma 5.1.12. Let A be a set, and let c be a sequence of length n strictly ordered by ≺A.

Then dcl(Aci) is coinitial at 0 in dcl(Ac≤i), for each i ≤ n.

Proof. Suppose not. Let i be minimal witnessing failure. Then dcl(Aci−1) is coinitial at 0 in

dcl(Ac<i), but dcl(Aci) is not coinitial at 0 in dcl(Ac≤i). Note that i > 1. Since ci ≺A ci−1,

we know that ci is a noncut near α ∈ dcl(A) over A. Since dcl(Aci) is not coinitial, we know

that there is some f(c≤i), f an A-definable function, such that f(c≤i) is a noncut above 0

over Aci.

Claim 5.1.13. ci is not a noncut near α over Ac<i.

Proof. f(c<i,−) is an Ac<i-definable function. We can find an A-definable g, such that, for

x sufficiently close to α, 0 < g(x) ≤ f(c<i, x). If ci were a noncut near α over Ac<i, then ci

would be “sufficiently close” to α, so it is not.

Thus, there is some A-definable function, g, such that g(c<i) lies between α and

ci. By minimality of i, we know then that there is an A-definable g′ such that g′(ci−1) lies

between α and ci. But then, by Lemma 5.1.4, g′(ci−1) -A ci, which implies ci−1 -A ci,

which contradicts the strict ordering of c.

Lemma 5.1.14. Let A be a set, and let c1, . . . , ck be elements with ci ≺A cj for i > j. Then

ci ≺j cj for i > j.

Proof. Fix i > j. Let e ∈ dcl(Aci) be such that (0, e) ∩ dcl(Acj) = ∅. By Lemma 5.1.12,

dcl(Acj) is coinitial at 0 in dcl(Ac≤j). Thus, (0, e) ∩ dcl(Ac≤j) = ∅, so ci ≺j cj .

Corollary 5.1.15. Let A be a set, and let c = 〈c1, . . . , ck〉 with ci ≺A cj for i > j. Then

for any A-definable non-constant function, f , f(c) ∼A ci, for some 1 ≤ i ≤ k.
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Proof. Let f(x1, . . . , xk) be anyA-definable function. We may assume that f is non-constant

on xk in a neighborhood of c≤k, otherwise we may shorten c and take f as a function in

k − 1 variables.

We first show that f(c) %A ck. Suppose not. Then f(c) ≺A ck, and thus 〈c, f(c)〉

satisfies the conditions of Lemma 5.1.14, and so the conclusion holds, in particular that

f(c) ≺k ck. But this is impossible, because f(c) ∈ dcl(Ac≤k).

Now, suppose f(c) 6∼A ci, for any 1 ≤ i ≤ k. Suppose that f(c) comes before cj ,

for some 1 ≤ j ≤ k, in the ≺A order. Then if we consider the tuple

〈c1, . . . , ci−1, f(c), ci, . . . , ck−1〉, it satisfies the conditions of the corollary, and so, by what

we have just proved, any definable function of this tuple, g(c<i, f(c), ci, . . . , ck−1) is at

least as big as ck−1 in the ≺A ordering. But, by exchange, we can take g so that

g(c<i, f(c), ci, . . . , ck−1) = ck, contradiction.

Definition 5.1.16. Given a base set, A, and a tuple, c = 〈c1, . . . , cn〉, cj ≺i ck, for i ≤ j, k,

iff cj ≺Ac<i
ck. Given a type, p(x1, . . . , xn), let xj ≺i xk iff, for some realization c of p,

cj ≺i ck.

Note that, in the last part, if some realization of p has this property, then so does

every realization of p. In this chapter, we will only consider the case of types in finitely

many variables. While the definitions, and most results, are specializations of the general

case (in Section 5.3), their exposition is easier in the finite case. Moreover, in Chapter 6 we

will only need the finite case.

Lemma 5.1.17. Let p be an n-type over a set A. Then there exists a re-ordering of the

variables of p such that, in the new ordering, xi %i xj , for 1 ≤ i < j.

Proof. We re-order p in stages. At stage i, having determined x<i, there is at least one

maximal element in the order ≺i among the remaining xj. Set any such maximal element

to be xi.

Definition 5.1.18. If the variables of p satisfy the conclusion of Lemma 5.1.17, we say

that p is decreasing. For i an index in the variables of p, let N(i) denote the greatest index

at most i such that tp(cN(i)/c<N(i)A) is a noncut, and 0 if such index does not exist.

Lemma 5.1.19. Let p be a decreasing type over a set A, let c |= p, and let i be an index

such that tp(ci/Ac<i) is a noncut. Then for k ≥ i, tp(ck/c<iA) is a noncut.
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Proof. Note that, since ci % ck (by definition of “decreasing”), we know that dcl(ckAc<i) is

coinitial above 0 in dcl(Ac≤i). Since ci is a noncut over Ac<i, there is some d ∈ dcl(Ac≤i),

a noncut above 0 over Ac<i. By coiniality, there is some d′ ∈ dcl(ckAc<i), with 0 < d′ < d,

but then d′ witnesses that ck is a noncut over Ac<i.

Lemma 5.1.20. Let p be a decreasing type over a set A, let c |= p, and let k = N(i) < i.

Then tp(ci/Ac≤k) is a cut. Moreover, Pr(Ac≤i) realizes only cuts over Ac≤k.

Proof. We show that Nj = Pr(c≤jA) realizes only cuts over M = Pr(Ac≤k), for all k <

j ≤ i, proving the lemma. The case k + 1 is from the definition of N(i). We know that

tp(cj/Ac<j) = tp(cj/Nj−1) is a cut, and that Nj−1 realizes no noncuts. Thus, Nj realizes

only cuts over M , by Lemma 2.2.3.

Lemma 5.1.21. Let A be a set and let c be a strictly decreasing sequence over A. Then

each ci is algebraically independent from Ac6=i.

Proof. We can show this by proving that cn is independent from Ac<n, going by induction.

We know that dcl(Acn) includes some point, e, such that (0, e) ∩ dcl(Ac<n) = ∅. By

denseness of definable closures, this means that we have some f(e) ∈ (0, e), with f an

A-definable function, so f(e) /∈ dcl(Ac<n), but f(e) ∈ dcl(Acn), so cn /∈ dcl(Ac<n).

Lemma 5.1.22. Let A be a set, and let c be a sequence strictly ordered by ≺A. Then each

element of c is independent of the others over A.

Proof. Apply Lemma 5.1.14 and then Lemma 5.1.21.

Lemma 5.1.23. Let A be a set, and let c be a tuple, with lh(c) = n. Then dcl(Ac) \ dcl(A)

contains a maximal and a minimal element with respect to the ≺A-ordering. In fact, any

chain strictly ordered by ≺A in dcl(Ac) has at most n elements.

Proof. Since the elements of the chain are algebraically independent, and they are all in

dcl(Ac), which is generated by at most n elements over A, there can be at most n elements

in the chain by Lemma 1.3.10.

Lemma 5.1.24. If c is a decreasing sequence over Ad, and d is maximal in the ≺A-ordering

over c, then 〈d, c〉 is a decreasing sequence over A.

Proof. Let c′ = 〈d, c〉. By assumption, c′1 %A c′i, for all i > 1. For j > 1, c′j %j c
′
i, for i > j,

iff cj+1 %Adc<j+1
ci+1, but that is given, since c is a decreasing sequence over Ad.
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Lemma 5.1.25. Let a be a tuple, with lh(a) = n, and M a structure. Then there is a tuple,

a′ ∈ dcl(Ma), with dcl(Ma) = dcl(Ma′), such that a′ is decreasing, and there is 1 ≤ i1 ≤ n

such that tp(aj/M) is a cut iff j < i1, and for j ≥ i1, tp(aj/Ma<j) is not in scale or near

scale on M . Moreover, if a′j is a noncut over Ma<k for any k ≤ j, then it is a noncut

above 0.

Proof. Go by induction on n. We may reorder a so that it is decreasing and assume

by induction that ai /∈ dcl(Ma<i), for i ≤ n. Let i be an index such that, for some

c ∈ dcl(Ma≤i) \M , c is a maximal element of the ≺M -ordering over dcl(Ma) \M – such

an element exists by Lemma 5.1.23. By induction, we can find a′′ interdefinable with this

tuple such that a′′ satisfies the conclusions of the lemma over Mc, say with i′1. We may

also assume that, if tp(ai/Ma<j) for some j ≤ i is a noncut, then it is a noncut above 0.

Then a′ = 〈c, a′′〉 is decreasing over M by Lemma 5.1.24. Since a′1 was maximal

in the ≺M -ordering, if tp(a′j/M) is a cut over M for j ≤ n, then tp(a′1/M) must also be a

cut over M by Lemma 5.1.7, and thus if tp(a′j/Ma′1) is a cut, then tp(a′j/M) is a cut. It is

not possible for tp(a′j/M) to be a cut, but tp(a′j/Ma′1) to be a noncut, since if tp(a′j/Ma′1)

is a noncut, it is a noncut near 0, and hence a noncut over M . Thus, if i′1 > 1, then we

take i1 = i′1 + 1. If i′1 = 1, then if tp(a′1/M) is a cut, take i1 = 2, and otherwise i1 = 1. We

now know that, if j < i1, tp(a′j/M) is a cut, and if j ≥ i1, tp(a′j/M) is not a cut. We also

know that tp(a′j/Ma′<j) is not in scale on M , for j ≥ i1, since tp(a′j/Ma′<j) is not in scale

on M(a′1), which is a weaker condition.

We know that tp(a′j/Ma′<j) is not near scale on Ma′1. If tp(a′1/M) is a cut, then

that implies that tp(a′j/Ma′<j) is not near scale on M , since M is cofinal in M(a′1). If

tp(a′1/M) is a noncut, then tp(a′j/Ma′<j) cannot be near scale on M , since that would

imply that a′1 was not maximal in the ≺M -ordering by Lemma 5.1.11.

5.2 Definable n-Types

Previous Work

The concept of the “scale” of a nonuniquely realizable cut is closely related to

the classification of definable types in o-minimal theories, as performed in [MS94]. In the

literature, the application of definable types continued towards the examination of dense

pairs of o-minimal structures where the larger structure realized no cuts over the smaller,
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see for instance [Pil94] or [BP98], with [Pil94] giving an alternate proof of [MS94]’s main

result. However, the techniques used in [MS94] are what we will focus on. We give some of

their results here, and then refine them.

In this section, there are no ambient hypotheses on T besides its being an o-

minimal expansion of a dense linear order without endpoints. Any further hypotheses will

be stated when necessary.

First, we note that, for a 1-type, “definability” is exactly equivalent to being a

noncut. However, in more variables this is no longer true. While a type in which each

variable is a noncut over the preceding ones will be definable, there are other possibilities

as well.

While [MS94]’s notation differs from ours, the following definition is equivalent to

some of theirs.

Definition 5.2.1. Let tp(a/N) be all out of scale on M iff for every k and every N -definable

k-ary function f , f(Mk) is neither cofinal nor coinitial at a in N . Let tp(a/N) be k-in-scale

on M iff for some k and some N -definable k-ary function f , f(Mk) is cofinal and coinitial

at a. Let tp(a/N) be k-near scale on M iff for some k and some N -definable k-ary function

f , f(Mk) is cofinal (or coinitial) at a.

Note that this definition does not make any requirement on tp(a/N) being a

nonuniquely realizable cut. With this in hand, we can reproduce several results from [MS94].

Note that [MS94] use “Dedekind complete in” to mean “realizes no cuts over.”

Lemma 5.2.2. ([MS94], Lemma 2.5) Suppose that p ∈ Sn(M), and 〈c, d〉 |= p, with c a

tuple and d a singleton. Let p0 be the restriction of p to the first n − 1 variables. If p0 is

definable and the type of d over Mc is not a cut, then p is definable.

Lemma 5.2.3. ([MS94], Lemma 2.6) Suppose that 〈c, d〉 realizes a type p, where c is a

tuple of length n− 1, and d a singleton, the restriction p0 of p to the first n− 1 variables is

definable, and that d realizes a cut over Mc, with tp(d/Mc) being all out of scale on M for

some k. Then p is definable.

Lemma 5.2.4. ([MS94], Lemma 2.7) Suppose that 〈c, d〉 realizes a type p, where c is a

tuple of length n − 1, and d a singleton, the restriction p0 of p to the first n − 1 variables

is definable, and that d realizes a cut over Mc, with tp(d/Mc) being k-near scale on M for

some k. Then p is definable.
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Lemma 5.2.5. ([MS94], Lemma 2.8) Suppose that 〈c, d〉 realizes p, with c a tuple of length

n− 1 and d a singleton, and that d realizes a cut over Mc. Suppose also that tp(d/Mc) is

k-in scale on M . Then p is not definable and M(c, d) realizes at least one cut over M .

Using these and other lemmas, [MS94] obtain the following theorems.

Theorem 5.2.6. ([MS94], Theorem 2.1) Let p ∈ Sn(M). Then p is definable iff for any a

realizing p, M(a) realizes no cuts over M .

Theorem 5.2.7. ([MS94]) Let p be an n-type over a structure M . Let c = 〈c1, . . . , cn〉 be

a realization of p. Then p is definable iff for each i ≤ n, tp(ci/Mc<i) is a noncut, all out

of scale on M , or k-near scale on M , for some k.

Refinement

However, we can actually characterize definable types using concepts similar to

our original “scale” definitions. We will be aided in this by a key result for the next several

chapters. First, we tighten the connection between [MS94]’s definitions and ours.

Lemma 5.2.8. Let M ≺ N , suppose that N realizes no cuts in M , and let c ∈ N be a tuple.

Suppose that f(c,Mn) is cofinal and/or coinitial at d in N , for f an M -definable function.

Then there is a unary N -definable function, g, such that g(M) is cofinal (coinitial) at d in

N iff f(c,Mn) is.

Proof. We go by induction on n. The case n = 1 is trivial. Note that, since N realizes

no cuts in M , by Theorem 5.2.6, c is definable over M . If f(c,Mn) is cofinal and coinitial

at d in N , then we are in the conditions of Lemma 5.2.5. But this implies that M is not

Dedekind complete in M(c, d). Thus, there must be some Mc-definable function, g, such

that g(d) is a cut in M – that is, since N realizes no cuts in M , g−1(M) is cofinal and

coinitial at d in N , so we are done.

Now we show that if f(c,Mn) is only cofinal (coinitial) at d in N , then we can find

the appropriate g. WLOG, we assume f(c,Mn) is cofinal at d in N . For notation, given

a definable set, D ⊆ M̄k, let D′ = D ∩Mk. Note that, by Lemma 5.2.4, we know that

tp(c, d/M) isM -definable. Let f̂(−) = f(c,−). We can find anMcd-definable cell, C ⊆ M̄n,

such that f̂(C ′) is cofinal at d in N and f̂(C) < d. Since tp(c, d/M) is M -definable, C can

be taken to be M -definable. By induction on n, if, for any a ∈M , f̂(a,C ′
a) is cofinal at d in
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N , we are done. Thus, we may assume not. For each a, we have sup(f̂(a,C ′
a)), which must

be less than d. Since sup(sup(f̂(a,C ′
a))) ≥ f̂(C ′), we know that sup(f̂(a,C ′

a)) is cofinal at

d in N , for a ∈M . But then we are done, since we can take g(x) to be f̂(x,Cx).

With Lemma 5.2.8, we are able to replace “k-near scale” and “all out of scale” in

Theorem 5.2.7 with “near scale” and “out of scale.”

Theorem 5.2.9. Let p be an n-type over M , and let c |= p. Then p is definable iff for

i ≤ n, tp(ci/Mc<i) is a noncut, or 1-near scale or 1-out of scale on M .

Proof. 1-near scale certainly implies k-near scale, and 1-out of scale implies all out of scale

by Lemma 5.2.8. Similarly, all out of scale implies 1-out of scale, and k-near scale implies

1-near scale by Lemma 5.2.8.

While heretofore we have only dealt with scale as it relates to nonuniquely realiz-

able cuts, uniquely realizable cuts can also be analyzed with scales, and are very predictable,

assuming that all noncuts over our base parameter set are interdefinable.

Lemma 5.2.10. Let N be an extension of M that realizes no cuts, and let tp(d/N) be a

uniquely realizable cut. Let all noncuts be interdefinable over M . Then tp(d/N) is all out

of scale on M .

Proof. Suppose not. Let f be N -definable such that f(Mn) is cofinal (WLOG) at d in N .

By Lemma 5.2.8, we may assume n = 1. We may restrict to an N -definable interval, I,

such that f(I ∩M) is cofinal at d in N , and f is monotone and continuous on I. WLOG,

let f be increasing on I. Let d′ = f−1(d), so d′ ∈ I. Since d is a uniquely realizable cut

over N , so is d′, and M is cofinal at d′ in N . Let ε ∈ N be a noncut above 0 over M . By

hypothesis, there is some M -definable function, h, such that h(ε, d′) is a noncut below d′

over Md′. Since tp(d′/N) is uniquely realizable, there is some e ∈ (h(ε, d′), d′)∩N , else the

types of h(ε, d′) and d′ would be the same over N . Thus, there is some a ∈ (e, d′)∩M . But

then a ∈ (h(ε, d′), d′), so h(ε, d′) is not a noncut below d′ over Md′, contradiction.

Theorem 5.2.11. Let p be an n-type over M , and let c |= p. Let all noncuts over M

be interdefinable. Then p is definable iff for i ≤ n, tp(ci/Mc<i) is a noncut, a uniquely

realizable cut (for i > 1), or near scale or out of scale on M .
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Proof. If p is definable, then tp(ci/Mc<i) is a noncut or k-near scale or all out of scale on M .

Note that, since tp(c<i/M) is definable, M(c<i) realizes no cuts over M , by Lemma 2.1.4.

If tp(ci/Mc<i) is k-near scale, then, since tp(c<i/M) is definable, we are in the situation of

Lemma 5.2.8, and thus tp(ci/Mc<i) is near scale on M (it cannot be a uniquely realizable

cut by Lemma 5.2.10). Since all out of scale implies uniquely realizable or out of scale on

M , that finishes the forward direction.

For the reverse direction, we go by induction on n. Thus, we have tp(cn/Mc<n) a

noncut, a uniquely realizable cut, or near scale or out of scale on M . If tp(cn/Mc<n) is a

noncut, or near scale on M , then by Lemmas 5.2.2 and 5.2.4, p is definable. If tp(cn/Mc<n)

is uniquely realizable, then by Lemma 5.2.10, p is definable. If tp(cn/Mc<n) is out of scale

on M , then, since tp(c<n/M) is definable by induction, M(c<n) realizes no cuts over M ,

and thus, tp(cn/Mc<n) is all out of scale, and hence, by Lemma 5.2.3, p is definable.

Miscellaneous Results

Lemma 5.2.12. Let M ≺ N , let d be an element, and let b be a strictly ≺M -maximal

element over N(d). Suppose that, for some N -definable function, f(b,M(b)) is cofinal

(coinitial) at d in N(b). Then there is some N -definable function, g, such that g(M) is

cofinal (coinitial) at d in N .

Proof. First, note that if we can show that f(M2) is cofinal (coinitial) at d in N , then we

will be done by Lemma 5.2.8, since N realizes no cuts over M (else b could not be strictly

≺M -maximal). We may consider f on an N -definable cell, C, such that f is continuous and

monotonic in each coordinate on C, and such that f(C ∩M(b)2) cofinal (coinitial) at d in

N(b). WLOG, we assume f(C ∩M(b)2) is cofinal.

Suppose f(C∩M2) is not cofinal. Then we can find a1 ∈ N with (a1, d)∩f(M2) =

∅. Since f(b,M(b)) is cofinal at d in N(b), we can find α an M -definable function with

f(b, α(b)) ∈ (a1, d) (since every element of M(b) is of the form α(b) for some such α).

If tp(b/M) is a noncut, WLOG above 0, then let h(x) = f(x, α(x)). If h is

decreasing, then h−1(a1) > b, but h−1(a1) is necessarily a noncut above 0 over M , since any

element of M between it and 0 would contradict choice of a1. But this contradicts strict

maximality of b. Thus, h is increasing. But then h−1(d) > b. If h−1(d) is not a noncut near

0 over M , then there is some element of M between it and b, and that element contradicts
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choice of a1, and if it is a noncut near 0, that contradicts the strict maximality of b. Thus,

tp(b/M) cannot be a noncut, so we may assume tp(b/M) is a cut.

Then tp(f(b, α(b))/N) 6= tp(d/N), since otherwise, b would be interdefinable (over

N) with an element in tp(d/N), and hence d would be interdefinable (over N) with an

element in tp(b/M), which contradicts strict maximality of b, since then there would be an

element of N(d) that was a cut over M . Then we can choose a2 ∈ (f(b, α(b)), d), a2 ∈ N .

Now consider the N -definable set A = {x1 ∈ C | f(x1, α(x1)) ∈ (a1, a2)}. Note that b ∈ A.

Since b /∈ N , we may assume that A contains an interval about b. Since tp(b/M) is a cut,

N does not realize any elements of that type, and so this interval must contain points of

M . Let b′ be such a point. But then g(b′, α(b′) ∈ (a1, a2), contradiction.

Lemma 5.2.13. Let M ≺ N , and let b be strictly ≺M -maximal over N . Then N(b) realizes

no cuts over M(b).

Proof. Note that, since b is strictly ≺M -maximal, N realizes no cuts over M . Suppose the

conclusion fails, so let f(b, e) be a cut over Mb, where f is N -definable, and e is a tuple from

N \M . We can choose f to minimize k = lh(e). Assume we have e as per Lemma 5.1.25 so

that it is decreasing, there are no near scale or in scale cuts on M , and if tp(ei/Me<i) is a

noncut, it is a noncut above 0.

Case 1: tp(ek/Me<k) is a uniquely realizable cut

Note that, since b is strictly ≺M -maximal, k 6= 1, since otherwise tp(e1/M) would

be a cut, and therefore b would not be strictly ≺M -maximal. Thus, k > 1, and tp(e1/M) is

a noncut above 0, implying that tp(e1/Mb) is a noncut above 0.

Claim 5.2.14. tp(ek/Mbe<k) is a uniquely realizable cut.

Proof. Let q±(x, y) be the ∅-definable functions taking a noncut, x, above 0 to a noncut

above (below) y. Suppose the claim fails. Then tp(ek/Mbe<k) is either a noncut, or a

nonuniquely realizable cut. If it is a noncut, then there is some Me<k-definable function, g,

such that ek is a noncut near g(b) over Mbe<k. Note that, since tp(ek/Me<k) is a uniquely

realizable cut, g(b) /∈ M(e<k), tp(g(b)/Me<k) = tp(ek/Me<k), and g must be continuous

and monotone in a neighborhood of b whose image includes ek. Then g−1(ek) must have the

same type as b over Me<k, and, a fortiori, over M . If tp(b/M) is a cut, then this contradicts

strict maximality, so tp(b/M) is a noncut. Since g−1(ek) is a noncut near b over Mbe<k,



41

b ∈ (q−(e1, g
−1(ek)), q

+(e1, g
−1(ek))), and tp(b/M) = tp(q±(e1, g

−1(ek))/M) (since e1 is a

noncut above 0 over M). But then it is clear that b cannot be strictly ≺M -maximal over

N – one of q±(e1, g
−1(ek)) would contradict that, using Lemma 5.1.4.

Thus, we may assume that tp(ek/Mbe<k) is a nonuniquely realizable cut. This

implies, using Lemma 2.2.18, that there is some b′, a Mbe<k-definable element, that is a

noncut above 0 over Me<k. But that implies that b is a noncut over Me<k, contradicting

Lemma 5.1.10.

Let q(e1, f(b, e)) be a noncut above f(b, e) (over Mf(b, e)) definable from Me1.

Since tp(ek/Me<kb) is a uniquely realizable cut, by Lemma 2.2.16 we may choose e′k ∈

M(be<k) such that f(b, e<k, e
′
k) ∈ (f(b, e), q(e1, f(b, e))), but then tp(f(b, e<k, e

′
k)/Mb) =

tp(f(b, e)/Mb), contradicting minimality of k.

Case 2: tp(ek/Me<k) is a noncut

Claim 5.2.15. tp(ek/Mbe<k) is a noncut above 0.

Proof. Suppose not. Then there is some Mbe<k-definable element, β(b), with β an Me<k-

definable function, such that 0 < β(b) < ek. But then b is a noncut over Me<k, contradicting

Lemma 5.1.10.

Since tp(ek/Mbe<k) is a noncut above 0, f(b, e) is a noncut over Mbe<k. Since

f(b, e) is a cut over Mb, there must be an element of M(be<k) that is a cut over Mb,

contradicting minimality of k.

Case 3: tp(ek/Me<k) is a nonuniquely realizable cut

We know that tp(ek/Me<k) is out of scale on M , by choice of e. Since N realizes

no cuts over M , we know that f−1
b (M ′(b)) is cofinal and coinitial at ek in M(e<kb). By

Lemma 5.2.12, with N = M(e<k) and d = ek, we know that there is a unaryMe<k-definable

function, g, such that g(M) is cofinal and coinitial at ek in M(e<k). But then g−1(ek) must

realize a cut over M , contradiction.

Lemma 5.2.16. Let M ≺ N , and let b be a decreasing tuple of length n, with N(i) ≤ 1

for all i ≤ n, and bn strictly ≺M -maximal over N . Let d be an element, and let f(x, y) be

N -definable, with x a tuple of length n and y a singleton, and f(b,M(b)) cofinal (coinitial)
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at d in N(b). Then there is some N -definable g(y), with y a singleton, such that g(M) is

cofinal (coinitial) at d in N .

Proof. We show that such a g exists by induction on n, simultaneously for all such M , N ,

b, d, and f . The case n = 1 is trivial.

Suppose we know the result for n, and we are trying to show it for n+ 1. Suppose

we have such M , N , b, d, and f satisfying the premise of the lemma. Let M ′ = M(b1) and

N ′ = N(b1). Then I claim M ′, N ′, b>1, d, and f(b1,−) satisfy the premise of the lemma.

The only condition to check is that bn+1 is strictly ≺M ′-maximal over N ′. Suppose not, so

let c ∈ N ′ \M ′, such that c is a cut over Mb1bn+1.

Claim 5.2.17. c is a noncut over Mb1.

Proof. Since b1 is ≺M -maximal over b, and bn is strictly ≺M -maximal over N , b1 is strictly

≺M -maximal over N , and thus, since N realizes no cuts over M , N(b1) realizes no cuts over

Mb1, by Lemma 5.2.13.

tp(bn+1/Mb1) is a cut, by Lemma 5.1.20. But then, since c is a cut over Mb1bn+1,

bn+1 is a noncut over Mb1, which this is impossible. Thus, we are in the premise of the

lemma and, by induction, know that there is some N ′-definable function, g, such that

g(M ′) is cofinal (coinitial) at d in N ′. But then, by Lemma 5.2.12, we know that there is

an N -definable function, h, such that h(M) is cofinal (coinitial) at d in N .

Lemma 5.2.18. Let M ≺ N , let d be a noncut over N , and let b be a decreasing tuple of

length n, with N(i) ≤ 1 for all i ≤ n, and dcl(bM) strictly ≺M -maximal over N(d). Then

N(b) does contain any realizations of tp(d/N) – equivalently, N is dense in N(b) in an

interval around d.

Proof. First, note that our hypothesis gives us that dcl(bM) is strictly ≺M -maximal over

N , a fortiori. Lemma 5.1.10 gives the result for n = 1, since then tp(b1/N) must be a cut,

so N(b) realizes nothing in the type of d over N , which is a noncut.

For the lemma to fail, N(b) must contain a noncut over N . Thus, some bi must be

a noncut over N(b<i), by Lemma 2.2.3. Assume for a contradiction that tp(bn/Nb<n) is a

noncut, for some n > 1, say, near f(c), for some c ∈ N andMb<n-definable function f . Since

N(n) ≤ 1, we know that f(c) /∈ dcl(Mb<n), and hence tp(f(c)/Mb<n) = tp(bn/Mb<n). But

we know that, since N realizes only noncuts over Mb<n, (as M(b<n) realizes only cuts over
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Mb1 and N realizes only noncuts over Mb1), tp(f(c)/Mb<n) is a noncut, and tp(bn/Mb<n)

is a cut, contradiction.

Lemma 5.2.19. Let p be a decreasing type in n variables over a set A. Let f be an Ac<n-

definable function. Then f(Ac<N(n)) is cofinal (coinitial) at cn in dcl(Ac<n) iff there is

some Ac<n-definable g such that g(A) is cofinal (coinitial) at cn in dcl(Ac<n).

Proof. The reverse direction is trivial. For the forward direction, we go by induction on

n. Note that if N(n) = 1 or N(n) = 0, the result is trivial, so we may assume not. Let

k = N(N(n) − 1). Now, for each cj , N(n) ≤ j ≤ n, cj is a noncut over Ac<N(n). Replace

each cj by c′j , a noncut above 0 definable from Ac<N(n)cj. Let c′ = 〈c′N(n), . . . , c
′
n−1〉. Then

c′ is a decreasing sequence over Ac<N(n), and actually over Ac<k, by Lemma 5.1.5.

Then, with M = Pr(Ac<k), N = M(c′N(n), . . . , c
′
n−1), b = 〈ck, . . . , cN(n)−1〉, and

d = c′n, by Lemma 5.2.16, there is an N -definable function, g, such that g(M) is cofinal

(coinitial) in N at c′n. In other words, there is an Ac<kc
′
≥N(n)-definable function, g, such

that g(dcl(Ac<k)) is cofinal (coinitial) in dcl(Ac<kc
′
≥N(n)) at c′n. By induction, this implies

that there is an Ac<kc
′
≥N(n)-definable function, h, such that h(dcl(A)) is cofinal (coinitial)

in dcl(Ac<kc
′
≥N(n)). But then h is Ac<n-definable, and, since by Lemma 5.2.18, N is dense

in N(b), h is cofinal (coinitial) in N(b), i.e., in dcl(Ac).

Corollary 5.2.20. Let A be a set, and let c be a decreasing sequence over A, of length n.

Suppose tp(cn/Ac<n) is a nonuniquely realizable cut. Then tp(cn/Ac<n) is in scale (near

scale) on A iff it is in scale (near scale) on Ac<N(n).

Proof. Apply Lemma 5.2.19 to the function witnessing in scale or near scale.

5.3 Infinite Decreasing Extensions

Introduction

Lemma 5.1.17 tells us that any n-type can be reordered to be decreasing. The

question remains, though, whether any type, in any number of variables, can be reordered

to be decreasing. First we give a definition of decreasing for infinite sequences.

Definition 5.3.1. Let I be any order type. We denote “J is a proper initial segment of I”

by J @ I.



44

Definition 5.3.2. Let c = 〈ci〉i∈I be a sequence, with order type I. Say c is decreasing if,

for any J @ I, there is S(J) A J , S(J) @ I, such that for any j ∈ S(J) \ J and k > j,

cj %cJ
ck. We will denote %cJ

by %J . Note that this definition extends the definition in the

finite case, where S(J) is the initial segment extending J isomorphic to J + 1. Decreasing

types are defined analogously to the finite case.

While it is easy to see that a finite sequence can be reordered so that it is decreas-

ing, it is not so simple to reorder an infinite sequence.

Example 5.3.3. Let M = (R,+, ·, 0, 1, <), and let 〈εi〉i∈Z be a sequence of noncuts above 0,

such that tp(εi/Mε<i) is a noncut above 0. Let α be the cut approximated by
∑

0≤i

∏

0≥j≥−i εj (meaning that α is greater than every finite partial sum of this

expression, but less than any element of M that is greater than every finite partial sum).

Let βk = εk +
∑

k≤i

∏

−k≥j≥−i εj for k > 0. Let C = {εi}i∈Zα{βk}k∈N. Then, while C can

be ordered to be decreasing, it requires some care, in that the βk’s must come before the

εi’s.

This example shows that the method used in Lemma 5.1.17 can fail for infinite

extensions – namely, care is required in the order that elements are selected. If, for example,

we constructed the sequence by inserting the εi’s first, there would be no way to insert the

βi’s to keep the sequence decreasing. I do not know if the analogue of Lemma 5.1.17 is

actually true for infinite extensions.

However, if we assume that the set is algebraically closed – as it will be if it is

an elementary extension of our base – then we can obtain the expected result, which is

analogous to Lemma 5.1.25.

For the rest of this section, we will fix a base model, M , and an elementary

extension, N . For ease of notation, we expand our language by constants for each element

of M , so that tp(a) is equivalent to tp(a/M), and similarly ∅-definable is equivalent to

M -definable.

Convex Sets

Definition 5.3.4. Let S ⊆ N . We form the T-convex closure of S by taking the convex

closure of dcl(S) ∩N+, denoted tcl(S).

Let S = {tcl(S) | S ⊆ N+}.
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Lemma 5.3.5. S is totally ordered by inclusion.

Proof. Suppose not, so let S1, S2 be such that tcl(S1)\ tcl(S2) and tcl(S2)\ tcl(S1) are both

non-empty. Since both are convex, it must be the case that, WLOG, there is s1 ∈ tcl(S1),

with (0, s1]∩ tcl(S2) = ∅, and s2 ∈ tcl(S2), with [s2,∞)∩ tcl(S1) = ∅. We may assume that

s1 ∈ dcl(S1), s2 ∈ dcl(S2) (otherwise, since they are in the convex closures, we may replace

them with more “extreme” elements). But the map, q, sending the noncut near ∞ to the

noncut above 0 shows that either q(s2) ∈ (0, s1), so dcl(S2) ∩ (0, s1) 6= ∅, contradiction, or

that, similarly, dcl(S1) ∩ (0, s2) 6= ∅, also contradiction.

Let S be given by 〈Ui〉i∈IS
, for IS some ordered index set. For each i ∈ IS , let

ci be any element of Ui which is less than
⋃

j<i Uj, if such element exists. Let the ordered

index set of the ci’s be given by I0 ⊆ IS .

Lemma 5.3.6. If i > J , for J @ I0, then tp(ci/cJ ) is a noncut above 0.

Proof. Suppose not, so for some initial segment J and i > J , we have 0 < f(e) < ci, with

e a tuple from cJ and f an ∅-definable function. Choose J and i to minimize lh(e). Note

that tp(ci) is a noncut above 0, since ci < M+, so lh(e) ≥ 1. Let e = 〈ci1 , . . . , cik〉, with

i1 < . . . < ik, and let ej = cij , for j = 1, . . . , k. Since e has minimal length, tp(ej/e<j)

is necessarily a noncut above 0 for 1 ≤ j ≤ k. But by Theorem 3.2.2, this means that

f(e) = f(e1, . . . , ek−1, ek) ≥ g(ek) > 0, for some ∅-definable g. Thus, we may take e to be a

singleton, cj , and so f(cj) < ci. By the same argument as above, we know that tp(cj) is a

noncut above 0. Thus, since cj ∈ Uj, there must be d ∈ dcl(Sj) with d ∈ (0, cj ]. But then

f(d) ≤ f(cj) < ci, so ci ∈ tcl(Sj) = Uj , contradicting choice of ci.

Lemma 5.3.7. c0 is decreasing. In fact, i < j implies cj -J ci, for any J @ I0.

Proof. We need only show the claim for i, j, J with i > J . By the previous claim, both ci

and cj are noncuts above 0 over cJ . Since cj /∈ Ui, cj < ci. Given any ∅-definable function,

f , and tuple e from cJ , if f(e,−) is increasing in a neighborhood above 0, mapping it to a

neighborhood above 0, then 0 < f(e, cj) < f(e, ci), showing that cj -J ci.

Lemma 5.3.8. For i ∈ IS, if ci exists, then Ui = tcl(ci).

Proof. Note first that tcl(ci) ∈ S, and tcl(ci) 6= Uj for j < i, since ci was chosen not in Uj

for j < i. Thus, tcl(ci) ⊇ Ui. It remains to show that Ui ⊇ tcl(ci), which we do by proving
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that an arbitrary d ∈ tcl(ci) is in Ui. Given d ∈ tcl(ci), we know (0, d]∩dcl(ci) 6= ∅. We may

assume d is a noncut above 0 or near ∞, since otherwise our goal is trivial. WLOG, assume

it is above 0. Let f be an ∅-definable function with f(ci) ∈ (0, d]. Thus, f is increasing in

a neighborhood of 0. Since ci ∈ Ui, there is some e ∈ dcl(Si) with e ∈ (0, ci]. But then

f(e) ≤ f(ci) ≤ d, showing that d ∈ Ui.

Lemma 5.3.9. For i ∈ I0, tcl(ci) = tcl(c≤i).

Proof. This is an easy consequence of Theorem 3.2.2. For it not to be the case, dcl(c≤i)

would have to realize a noncut above 0 over ci, through some f(ci), with f a c<i-definable

function (note that, since tp(ci/c<i) is a noncut above 0 by Lemma 5.3.6, ci is a necessary

argument to f). But Theorem 3.2.2 gives us an ∅-definable function, g, such that 0 <

g(ci) ≤ f(ci), contradiction.

Lemma 5.3.10. For any initial segment, J v IS,
⋃

i∈J Uj ∈ S.

Proof. We show that
⋃

i∈J Uj = tcl(cJ ). Clearly,
⋃

i∈J Uj ⊆ tcl(cJ ), by Lemma 5.3.8 –

indices i such that ci exists must be cofinal in J . In the other direction, let d ∈ tcl(cJ),

with d a noncut above 0, WLOG. Then (0, d] ∩ dcl(cJ ) 6= ∅, so for some emptyset-definable

function, f , f(ci1 , . . . , cik) ∈ (0, d], with i1 < . . . < ik. But then d ∈ tcl(c≤ik) = Uik , so we

are done.

Claim 5.3.11. Let A ⊆ N be a set. If b is strictly ≺A-maximal with respect to the set

c0 \ dcl(A), then b is a cut over A.

Proof. Suppose that b were a noncut over A. Replacing b by a Ab-definable element, we

can assume that b is a noncut above 0 over A. Let Ui = tcl(A), and Uj = tcl(Ab), with

i < j ∈ IS . We first show that Uj = tcl(b). Clearly tcl(b) ⊆ Uj . As well, tcl(b) ⊇ tcl(A),

since b and the image of b under the function sending the noncut above 0 to the noncut near

∞ bounds tcl(A). Moreover, if d ∈ Uj \ tcl(A), WLOG a noncut above 0 over MA, then,

for some A-definable f , f(b) ∈ (0, d], but then, by Theorem 3.2.2, there is some ∅-definable

g with 0 < g(b) ≤ f(b), so d ∈ tcl(b).

We know there is some k, i < k ≤ j, such that ck exists. We show that b -A ck,

yielding a contradiction. Since tcl(ck) ⊆ tcl(b), there must be some ∅-definable function, f ,

such that 0 < f(b) ≤ ck, which is enough, by Lemma 5.1.4.
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Before we continue to our main result, it is worth examining a related concept in

the case that T expands the theory of an ordered field.

The Maximal Valuation

We first introduce the “maximal valuation” on N .

Definition 5.3.12. . Consider N×, the multiplicative group of N . Define a ∼v b iff

ca ≤ b ≤ da, for c, d ∈ M , c, d 6= 0. Let Γ = N×/ ∼v, and write Γ additively. Let

v : N× → Γ ∪ {∞} be defined by sending elements to their images under quotienting, and

sending 0 to ∞.

Lemma 5.3.13. For any g ∈ Γ, |v−1(g)| is connected.

Proof. If a, b ∈ v−1(g), then necessarily ca ≤ b ≤ da, for some c, d ∈ M . WLOG, assume

that a < b. We must show that, for e ∈ (a, b), a ∼v e. But a ≤ e ≤ da, so we are done.

Lemma 5.3.14. The relation < on Γ defined by

x < y ⇐⇒ ∃c ∈ |v−1(y)|((0, c) ∩ v−1(x) = ∅)

is a total order. Moreover, Γ is an ordered group under this order.

Proof. We first show that it is a partial order. Assume x < y, and let a ∈ |v−1(x)|. Then it

is not possible for (0, a)∩v−1(y) to be empty, because we already know there is c ∈ |v−1(y)|

with (0, c) ∩ v−1(x) empty, and thus, since a ∈ v−1(x), a > c. Transitivity is similar.

To show the order is total, assume x 6= y, for x, y ∈ Γ. Then |v−1(x)| and |v−1(y)|

are disjoint in N . Since they are connected, they are necessarily intervals (though possibly

not with definable endpoints). One lies to the left of the other one, say |v−1(y)| lies to the

left of |v−1(x)|. But that implies x < y.

It remains to show that Γ is an ordered group. We first note that our definition

of the order can be amended to be

x < y ⇐⇒ ∀c ∈ |v−1(y)|((0, c) ∩ v−1(x) = ∅),

since |v−1(y)| is connected. Let x, y, z ∈ Γ with x < y. Let a ∈ |v−1(x)|, b ∈ |v−1(y)|,

c ∈ |v−1(z)|. By definition, x+ z is the equivalence class of ac under ∼v, and similarly for

y + z and bc. We know that (0, b) ∩ v−1(x) = ∅ for any d ∈ M . Suppose x + z ≥ y + z,
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so, for some e ∈ |v−1(y + z)|, (0, e) ∩ v−1(x + z) 6= ∅. Since e ∼v bc, we may write

(0, bcr) ∩ v−1(x+ z) 6= ∅, for some r ∈M . Similarly, we may then write 0 < acs < bcr, for

some s ∈M . But then 0 < as < br, contradicting x < y.

Lemma 5.3.15. v is a valuation, with Γ the value group.

Proof. We have that Γ is an ordered group, so to show that v is a valuation, it remains

to verify v(ab) = v(a) + v(b), and v(a + b) ≥ min{v(a), v(b)}. The first is trivial. For

the second, note that, if v(a) = v(b), then for some c, d ∈ M , ca ≤ b ≤ da, and so

(c+ 1)a ≤ a+ b ≤ (d+ 1)a. Suppose that one of c or d is −1. We may negate both a and b

if necessary, and assume that c = −1 (this does not affect the valuation of a+ b). If there is

some e such that ea < a+b, then v(a+b) = v(a). If not, then v(a+b) > v(a), by definition.

Thus, if v(a) = v(b), then v(a + b) ≥ v(a). If v(a) < v(b), we show v(a + b) = v(a). Since

v(a) < v(b), we know that, negating both a and b b < 0, ca /∈ (0, b) for any c ∈ M . Then

a+ b lies between a/2 and 3a/2, since a/2,−a/2 /∈ (0, b).

Lemma 5.3.16. If v(a) = v(b) 6= 0, then tp(a) = tp(b).

Proof. Since order type determines type, if tp(a) 6= tp(b), then there is some c ∈ M ,

a < c < b (WLOG). But then v(a) > 0, v(b) < 0.

We can now link subgroups of the value group with T -convex closures.

Lemma 5.3.17. If S ⊆ N+, S non-empty, then S̃ = v(tcl(S)) is a group.

Proof. Let x ∈ S̃. Then for some a ∈ tcl(S), v(a) = x. If a ∈ dcl(S), then 1/a ∈ dcl(S),

so v(1/a) = −x ∈ S̃. If a /∈ dcl(S), then, for some s1, s2 ∈ dcl(S), s1 < a < s2, so

1/s2 < 1/a < 1/s1, so again 1/a ∈ tcl(S). This shows the presence of inverses. Convexity

of S shows the presence of 0. If x, y ∈ S̃, we must show x + y ∈ S̃. Let a, b ∈ tcl(S) be

such that v(a) = x, v(b) = y. By definition of the valuation, x + y = v(ab). Again, if

a, b ∈ dcl(S), then ab ∈ tcl(S), and if one or both are not in dcl(S), we may bound them

by elements that are, and then bound ab by the products of those elements, again yielding

ab ∈ tcl(S).

Main Result

Theorem 5.3.18. Let N be an elementary extension of M . Then we can write N \M as

a sequence, c = 〈ci〉i∈I , for some ordered set I, such that c is decreasing over M .
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Proof. Let |N \M | = κ. We begin with a “skeleton” c0 = 〈ci〉i∈I0 , with the ci’s from above

in the discussion on S.

We now have c0, a decreasing sequence in N . We must expand it, keeping it

decreasing, to include all elements of N \M . First, we expand it to c′ such that dcl(c′) = N .

It will then be trivial to expand c′ to c such that c is an ordering of N \M .

Let |N \(M ∪c0)| = κ. We construct c′ by induction in < κ+-many stages, ordinal-

indexed. At stage α, we have cα, a decreasing sequence indexed by ordered set Iα, with

Iβ ⊆ Iα if β ≤ α. We denote cα by d for ease of notation.

We have the following three induction assumptions.

(I1) d is decreasing.

(I2) For any i ∈ Iα, if there is a maximal J @ Iα such that tp(di/dJ ) is a noncut, then it

is a noncut above 0.

(I3) For every K @ Iα, if a ∈ dcl(dK) \ dK , then a is not strictly J-maximal for any initial

segment J < K unless a ∈ dcl(dJ ).

Preparation

We first prove some useful claims.

Claim 5.3.19. For any b ∈ N , there is a shortest initial segment of Iα, J(b), such that b

is strictly J(b)-maximal.

Proof. Since b is strictly Iα-maximal, we can let

J(b) =
⋂

{K v Iα | b is strictly K-maximal}.

Suppose that b is not strictly J(b)-maximal. Then we can find J ′ with 〈J(b), J ′〉 an initial

segment of Iα, such that, for j ∈ J ′, b -J(b) dj . Suppose that, for some j ∈ J ′, dj is a

noncut over d<j . Then, by (I2), it is a noncut near 0. Thus, if b �<j dj , then b �J dj ,

contradiction. Therefore, every element of dJ ′ is a cut over its predecessors. But then, for

j ∈ J ′, b cannot be < j-maximal, because dj is a cut over d<j . Contradiction, and so b is

strictly J-maximal.

The following claims will usually be used with J = J(b). However, note that they

do not depend on that, and we will use them occasionally with J not necessarily J(b).



50

Claim 5.3.20. If b is strictly J-maximal, b is a cut over dJ .

Proof. Apply Claim 5.3.11 to dJ .

Claim 5.3.21. If b is strictly J-maximal, J @ K and dK realizes no cuts over dJ , then

dcl(dK) realizes no cuts over dK .

Proof. Trivial, using (I3).

Claim 5.3.22. If b is strictly J-maximal, then tp(b/dK) is a cut for any initial segment K

extending J .

Proof. By Claim 5.3.21, we know that dcl(dK) realizes no cuts over dJ , since the fact that

b is strictly J-maximal implies that dK realizes no cuts over dJ . If tp(b/dK) were not a cut,

dcl(dK) would have to realize an element with the same type as b over dJ , but then dcl(dK)

would realize a cut, contradiction.

Claim 5.3.23. Let b be strictly J-maximal. For j > K, K an initial segment extending J ,

tp(dj/dK) is a cut iff tp(dj/dKb) is a cut.

Proof. Suppose not. First, assume that tp(dj/dK) is a cut, but tp(dj/dKb) is a noncut.

Then there is some dK -definable function, f , such that f(b) is a noncut near dj over dK .

But then f−1(dj) is a noncut near b over dK , and hence a fortiori over dJ . But then

f−1(dj) is strictly J-maximal, implying that f−1(dj) ∈ dK by (I3), and so b is not strictly

J-maximal, contradiction.

Now, assume that tp(dj/dK) is a noncut. Then dcl(djdK) realizes no cuts over

dK . Since b is dK-maximal over dcl(dKdj) \ dcl(dK) by Claim 5.3.22, we can apply Lemma

5.2.13, showing that tp(dj/dKb) is a noncut.

Claim 5.3.24. Let b be strictly J-maximal. Let BJ(b) = dcl(dJb)\dcl(dJ ). Let a ∈ dcl(db).

If a is strictly J ′-maximal for J ′ < J , then there is some b′ ∈ BJ(b) such that b′ is strictly

J ′-maximal and a is a noncut near b′ over dJ ′ – in fact, over dJ . Moreover, a is never

strictly maximal over d>J ′ with respect to ≺dJ′b for J ′ > J .

Proof. First we consider the case where J ′ < J . Since b is strictly J-maximal, no element of

d>J realizes a cut over dJ , and, in fact, no element of dcl(d>J ) realizes a cut over dJ , by I3.

As well, by Claim 5.3.20, tp(b/dJ ) is a cut. Thus, we can apply Lemma 5.2.13, so dcl(db)
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realizes no cuts over dcl(dJb). Let a ∈ dcl(db) be strictly J ′-maximal. Then tp(a/dJ ′) is a

cut by Claim 5.3.11, and hence, by Claim 5.3.22, tp(a/dJ ) is a cut. Since tp(a/dJb) is a

noncut, we can find b′ ∈ BJ(b) such that a is a noncut over dJ near b′.

By Claim 5.3.11, if a ∈ dcl(db) is strictly J ′-maximal, then it must be a cut over

dJ ′ . Moreover, since dJ realizes no cuts over dJ ′ , tp(a/dJ ) is still a cut. By Claim 5.3.23,

this implies tp(a/dJb) is a cut, contradiction.

If J ′ > J , suppose a is strictly dJ ′b-maximal over d>J ′ . By Claim 5.3.11, tp(a/dJ ′b)

is a cut. Since a is strictly dJ ′b-maximal, that implies that tp(dj/dJ ′b) is a noncut, for j > J ′.

By Claim 5.3.23, that implies that tp(dj/dJ ′) is a noncut, for j > J ′, and thus, by I3, dcl(d)

realizes no cuts over dcl(dJ ′). But then, since by Claim 5.3.22 tp(b/dJ ′) is a cut, and hence

strictly J ′-maximal, Lemma 5.2.13 implies tp(a/dJ ′b) is not a cut, contradiction.

Claim 5.3.25. If b is strictly J(b)-maximal, then 〈dJ(b), b〉 is decreasing.

Proof. Suppose not. Let K be an initial segment of J(b) witnessing the failure. Then, for

any J ′ extending K, there is j ∈ J ′ \K such that dj ≺K b. But that means that b is strictly

K-maximal, contradicting the definition of J(b).

Successor stage – constructing cα+1

Fix b ∈ N \ dcl(d). Fix J to be the shortest initial segment guaranteed by Claim

5.3.19. If there is a maximal K @ J such that b is a noncut over dK , we may replace b by

a bdK-definable element that is a noncut above 0 over dK . Let B = dcl(dJb) \ dcl(dJ). Let

J0 =
⋂

{K v Iα | ∃b′ ∈ B(b′ is K-maximal)}.

Case 1: There is b′ ∈ B such that b′ is strictly J0-maximal

In this case, we replace b by b′ and insert b after dJ0
. Let cα+1 = 〈dJ0

b, d>J0
〉. Let

d′ = cα+1. Let I ′ be the index set of d′. Let γ be the index of b, so I ′ \{γ} = Iα. In general,

for K ′ @ I ′, let K = K \ {γ}, and for K @ Iα, let K ′ be the initial segment of I ′ formed by

inserting γ at the appropriate point (if J0 @ K).

Claim 5.3.26. d′ is decreasing.

Proof. Suppose not. By Claim 5.3.25, and since b is strictly J0-maximal, the counterexample

must come for some J ′ extending the segment 〈J0, γ〉. Then, for any K ′ extending J ′, there

is some j ∈ K ′, k > j, such that d′k �J ′ d′j . We can take K ′ to be S(J)′. Thus, there is
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some element of dcl(dJdjb) that is a noncut near 0 over dcl(dJdkb), but dcl(dJdj) realizes

no noncuts over dcl(dJdk). Thus, there is some dJ -definable function, f , such that dj is a

noncut near f(b) over dJdkb. But then we can pull dj back, dJ -definably, to get f−1(dj), a

noncut near b over dJ . Since b is strictly J0-maximal, so is f−1(dj), so f−1(dj) ∈ d by (I3),

violating the fact that b is J0-maximal.

Claim 5.3.27. d′ satisfies I2.

Proof. By Claim 5.3.23, if tp(d′j/d
′
K ′) is a noncut, then tp(dj/dK) is a noncut, for any

K extending J0. As well, since b is a cut over dK by Claim 5.3.22, it is not possible for

tp(d′j/dK) to be a noncut near 0, while tp(d′j/d
′
K ′) is a noncut not near 0. So we are

done.

Claim 5.3.28. d′ satisfies I3.

Proof. We assumed that b does not violate I3, so any failure must come from K ′ extending

〈J0, γ〉. Suppose there is a failure at K ′, so let a ∈ dcl(d′K ′)\d′K ′ , with a strictly J ′-maximal

for some J ′ @ K ′. Since a is strictly J ′-maximal, we know that d>J (= d′>J ′) does not realize

any cuts over dJb. By Claim 5.3.23 and (I3), this means that dcl(d) realized no cuts over

dJ . But then by Lemma 5.2.13, dcl(db) realizes no new cuts over bdJ , which contradicts the

existence of a.

Case 2: Case 1 fails

In this case, we will need to adjoin all elements of B that are J ′-maximal for some

J ′ @ J . We do this in stages, ordinal-indexed. We have d0 = d, indexed by J0 = Iα,

C0 = J , and B0 = B.

At each successor stage i + 1, choose b′ ∈ Bi such that b′ is strictly di
J ′-maximal

(over di
>J ′) and b′ /∈ dcl(di

J ′), for J ′ some initial segment of J i and J ′ @ Ci. Note that, if b′

exists and there is some K such that b′ is a noncut over di
K , then we can assume that b′ is

a noncut above 0 over di
K . If we can choose K maximal, do so, otherwise, choose arbitrary

K with J0 @ K, if such K exists. If this b′ exists, then insert b′ into di after the first such

segment that it is maximal over. Let di+1 be this new sequence. Let Bi+1 = dcl(di
J ′b′), let

Ci be the K we chose, and let J i+1 be the index set of di+1. Take unions/intersections at

limits. This construction must halt in fewer than |B|+ stages.
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Claim 5.3.29. Let β ∈ di1 , for some stage i1. Let i2 > i1. For K @ J i2 , let K ′ = K ∩ J i1 .

Then β is a noncut near e ∈ dcl(di2
K) over di2

K iff β is a noncut near e over di1
K ′ (in particular,

e ∈ dcl(di1
K ′)).

Proof. If di1
K ′ = di2

K , then the conclusion is trivial, so assume not. Then we can choose the

first element that was added in di2
K \ di1

K ′ , b′. Then every element added is algebraic over

b′di1
K ′ .

First, suppose β is a noncut near e over di1
K ′ . If β is not a noncut near e over

di2
K , then there is some e′ ∈ dcl(di2

K) between e and β (with “between” having the obvious

interpretation if e = ±∞). We may assume that e′ = f(b′), where f is a di1
K ′-definable

function. Since e′ /∈ dcl(di1
K ′), we know that e′ and β must have the same (noncut) type

over di1
K ′ . But b′ realizes a cut over di1

K ′ and defines a noncut, which is impossible.

Now, suppose β is a noncut near e over di2
K . Let e = f(b′). We may assume that β

was the most recent element added to di1 , since if we prove the claim for that i1, the claim

shows it for all other i1. Thus, if the index of β in di1 is γ, then di1
<γ = dJ(β). We then have

f−1(β), which is a noncut over dK near b′, and thus must be J(b′)-maximal. If β ∈ d, then

(I3) prevents this from happening. Thus, β /∈ d, and β ∈ B.

Suppose that, for some S′, K @ S′ @ J(β), β is a noncut over dS′ . Then, by our

construction, for some initial segment S, with K @ S @ J(β), β is a noncut above 0 over

dS . But then β is necessarily a noncut above 0 over dK , and, since b′ is a cut over dK , this

is impossible.

Since 〈dJ(β), β〉 is decreasing, and β is a cut over dK , necessarily dJ(β) realizes only

cuts over dK – else, let j be the first element such that tp(dj/d<j) is a noncut. Then dj is

necessarily strictly < j-maximal over d>jβ, but β is a cut over d<j, contradiction.

We have f−1(β), a noncut near b′ over dK . Since dJ(β) realizes only cuts over

dK , f−1(β) is a noncut near b′ over dJ(β) – note that dcl(dJ(β)) contains no realizations of

tp(b′/dK), by (I3). But b′ = g(β), for some dJ(β)-definable g. Thus, f−1(β) − g(β) is a

noncut over dJ(β), while β is a cut over dJ(β), contradiction.

Claim 5.3.30. Let i1, i2 be stages, i2 > i1. Let K be an initial segment of J i2 , and let

K ′ = K ∩ J i1 . If β1, β2 ∈ di1 , di2 , with β1, β2 /∈ di2
K , then β1 ≺

d
i2
K

β2 ⇐⇒ β1 ≺
d

i1
K′

β2.

Proof. Suppose the claim fails. WLOG, we may assume that β1 “decreased” in the order-

ings, so either β1 ≺
d

i2
K

β2 but β1 %
d

i1
K′

β2, or β1 ∼
d

i2
K

β2, but β1 �
d

i1
K′

β2. In either case, we
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can find a di2
K -definable element, e, such that β1 is a noncut near e, and e /∈ dcl(di1

K ′). But

this contradicts Claim 5.3.29.

Claim 5.3.31. di is decreasing, for every i.

Proof. We go by induction. If di is not decreasing for i a successor stage, choose K @ J i

witnessing the failure. Then, for any J ′ extending K, there is j ∈ J ′, k > j, with di
j ≺K di

k.

Let b′ be the element that was newly inserted at stage i.

If di
k = b′, then di

<k = d<k, and, by Claim 5.3.25, di
≤k is decreasing, which is a

contradiction. If di
j = b′, then K 6=< j, since di

j is strictly K-maximal. So then we can

just take J ′ to not include j. Finally, we consider the case where di
j, d

i
k ∈ di−1. But this is

impossible, by Claim 5.3.30.

If di is not decreasing at a limit stage, then choose K @ J i witnessing the failure.

Then, for any J ′ extending K, there is j ∈ J ′, k > j, with di
j ≺K di

k. Let i0 be the first

stage at which di
j and di

k were both in di0 . Note that i0 is a successor stage. But then, by

Claim 5.3.30, di0 is not decreasing, contradicting induction.

Claim 5.3.32. di satisfies (I2), for every i.

Proof. Since, by construction, every element has (I2) at the stage it was first inserted, Claim

5.3.29 is enough.

Now, let d′ =
⋃

di. By Claims 5.3.31 and 5.3.32, d′ is decreasing and has (I2). We

need only show

Claim 5.3.33. d′ satisfies (I3).

Proof. Suppose not. Let K be an initial segment of d′, with a ∈ dcl(d′K)\d′K , and a strictly

J-maximal, with a /∈ dcl(d′J ), for some J @ K. But note that we have only added elements

of B to d to obtain d′. Thus, a ∈ dcl(dB) \ dcl(d), and hence a ∈ dcl(B) = B. Thus, since

a /∈ d′K , there must be b′ ∈ B ∩ d′J – else a, or another element of B that was a cut over dJ ,

would have been inserted at some stage. Choose b′ to be the first such inserted element. Let

b′ be strictly J ′-maximal, for some J ′ @ J . Now, consider b′ and a in our original sequence,

d. Let S = J ∩ Iα. We show that a is strictly S-maximal, and S is the shortest such initial

segment.

Since tp(a/d′J ) is a cut and dcl(dSb
′) ⊇ d′j , we know tp(a/dSb

′) is a cut. Since

tp(b′/dS) is a cut, this implies tp(a/dS) is a cut. Suppose some element of d>S is a cut
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over dS . By Claim 5.3.29, it would then be a cut over dJ , contradicting a being strictly

J-maximal. Thus, a is strictly S-maximal.

But now, by Claim 5.3.24, it is not possible for a to be strictly ≺dSb′-maximal over

d>S , contradiction.

Then, setting cα+1 = d′, we are done with this stage.

Limits

We have shown that, at each successor stage, cα continues to satisfy the three

induction conditions. We must now show that the induction conditions are satisfied at limit

stages. First, some useful results.

Claim 5.3.34. Let β ∈ ci1 , for some stage i1. Let i2 > i1. For K @ J i2 , let K ′ = K ∩ Ii1 .

Then β is a noncut near e ∈ dcl(ci2K) over ci2K iff β is a noncut near e over ci1K ′ (in particular,

e ∈ dcl(ci1K ′)). Moreover, the reverse direction is true for any β ∈ N , not just β ∈ ci1 .

Proof. First, the forward direction. For a contradiction we may assume that ci2K realizes e, a

noncut near β (over ci1K ′) that ci1K ′ does not. WLOG, we may assume that i2 is the first stage

at which e is ci2K-definable, and then assume that i1 is the previous stage, so i2 = i1 + 1.

Let b be the element that was added to ci1 to obtain ci2 . Then b is strictly J(b)-maximal,

for some J(b) @ K ′. Then e = f(b), where f is ci1K-definable. But then f−1(β) must be a

noncut near b over ci1K , and hence over ci1J(b), and is therefore strictly J(b)-maximal. By (I3)

for stage i1, this is impossible.

Now the reverse direction – it proceeds exactly as in Claim 5.3.29. We do it for

arbitrary β ∈ N . Suppose β is a noncut near e over ci1K ′ . If β is not a noncut near e over ci2K ,

then there is some dcl(ci2K)-definable e′ between e and β. WLOG, we may assume that i2 is

the first stage at which such an e′ is ci2K -definable, and then assume that i1 is the previous

stage, so i2 = i1 + 1. Let b be the element that was added to ci1 to obtain ci2 . We may

assume that e′ = f(b), where f is a ci1K ′-definable function. We know e′ and β must have the

same (noncut) type over ci1K ′ , since e′ /∈ dcl(ci1K ′). But b realizes a cut over ci1K ′ (by Claims

5.3.20 and 5.3.22), and defines a noncut, which is impossible.

Claim 5.3.35. Let i1 < i2 < λ, and β1, β2 ∈ ci1 , ci2 . Let K be an initial segment of Ii2 ,

with K ′ = K ∩ Ii1 . Then β1 ≺
c
i1
K′
β2 iff β1 ≺

c
i2
K

β2.
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Proof. As in Claim 5.3.30, for a contradiction we may assume that ci2K realizes e, a noncut

near β1 (over ci1K ′) that ci1K ′ does not. But that is impossible by Claim 5.3.34.

Now we are ready to show that the induction conditions apply to cλ, λ a limit.

Let d = cλ.

Claim 5.3.36. d is decreasing.

Proof. Assume not, so choose K @ Iλ witnessing the failure. Then, for any J ′ extending K,

there is j ∈ J ′, k > j, with dj ≺K dk. Let i be the first stage at which dj and dk were both

in di. Note that i0 is a successor stage. But then, by Claim 5.3.35, di is not decreasing,

contradicting induction.

Claim 5.3.37. d satisfies (I2).

Proof. Since, by construction, every element has (I2) at the stage it was first inserted, Claim

5.3.34 is enough.

Claim 5.3.38. d satisfies (I3).

Proof. Suppose not. Let K be an initial segment of d, with a ∈ dcl(dK) \ dK , and a strictly

J-maximal, with a /∈ dcl(dJ ), for some J @ K. Let i be the first stage at which a is ci
Ii∩K

-

definable, and let K ′ = K ∩ Ii. If a were strictly J ′ = J ∩ Ii-maximal (over ci), then we

would have a contradiction, since ci satisfies (I3).

tp(dj/dJ) is a noncut, for j > J , j ∈ Iλ. Thus, tp(dj/dJ ′) is a noncut, for j > J ′,

j ∈ Ii. But by the reverse direction of Claim 5.3.34, with the “moreover” clause, tp(a/dJ ′)

is a cut, and hence a is strictly J ′-maximal, contradiction.

Definable Closure

At some point, the above construction halts. This must be because N \ dcl(cα) is

empty, for some α. Let c′ = cα. Note that c′ satisfies the three induction conditions. Now

we show that we can insert every element of dcl(c′) into c′ while preserving the induction

conditions. We start with c′0 = c′, and transfinitely insert elements, preserving the decreas-

ing condition and (I3). First, we show that c′α+1 satisfies these two conditions. Let d = c′α.

Let b ∈ dcl(d).

Claim 5.3.39. b ∈ dcl(dJ(b)).



57

Proof. True by (I3) for d.

Let d′ = c′α+1.

Claim 5.3.40. d′ is decreasing.

Proof. Clearly, any counterexample would have to come for an initial segment K such that

d′K contained b. But no new elements are definable with b, since b ∈ dcl(dJ(b)), so we are

done.

Claim 5.3.41. d′ satisfies (I3).

Proof. Clear – dcl(d′)\d′ ⊂ dcl(d)\d, so an element of dcl(d)\d would have to become strictly

J-maximal (or not dJ -algebraic) for some J when it was not before, which is impossible.

For limit stages, similar (but easier) arguments as for the previous limit stage

arguments work. So we are done.
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Chapter 6

Extending Continuous Functions to

Closed Sets

6.1 Exploring the Question

Given a bounded definable function and a definable set on which the function is

continuous, we may ask what happens when we try to extend the function continuously to

the closure of the set.

Remark 6.1.1. For any o-minimal structure, M , and any 1-type, p, if f is a bounded M -

definable function, there is a definable set C ∈ p, such that f is continuous on C, and f can

be extended continuously to the closure of C, C.

Proof. By cell decomposition, we can partition M into a finite number of intervals and

points, on each of which f is continuous. One of these intervals or points must be in p. If

a point is in p, then that point is an acceptable C. If p is the noncut near ±∞, then the

rightmost (leftmost) interval in the partition is contained in p, so we may assume that p is

not near ±∞. Thus, we may assume that there is an interval (a1, a2) ∈ p such that f is

continuous on (a1, a2), with a1, a2 ∈ M . Since f is continuous and bounded in an interval

above a1, limx→a+

1

f(x) exists, as does limx→a−
2

f(x), by [vdD98], Chapter 3, Corollary 1.
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Then let f be defined by

f(x) =























f(x) x ∈ (a1, a2)

limx→a+

1

f(x) x = a1

limx→a−
2

f(x) x = a2

.

f is continuous, since continuity at x ∈ (a1, a2) is given by continuity of f on (a1, a2), and

continuity at ai, i = 1, 2, is given by the construction of f at those points.

The analogue of Remark 6.1.1 for higher dimensions is false in general.

Example 6.1.2. Let M = (R,+, ·, <, 0, 1), the reals as an ordered field. Let

f(x, y) =











y
x y ≤ x

1 O.W.
,

with domain {〈x, y〉 | x, y > 0}. Then f is continuous and bounded on its domain, but it

cannot be continuously extended to the origin, which is in the closure of its domain, since

on the line Lm = {〈x, y〉y = mx}, f has a constant value of m, and the closure of each Lm

includes the origin.

However, while we may not be able to extend a function to the closure of its

entire domain, we can extend the function to the closure, provided we restrict the domain

appropriately.

Example 6.1.3. Let M and f be as above. If we restrict the domain of f to {〈x, y〉 | y < x2},

then f can be extended continuously to the closure of its domain.

Lemma 6.1.4. Let M expand a real closed field, and let f be an M -definable function,

continuous and bounded on its domain, C. Then, for any d ∈ C̄, there is some C ′ ⊆ C such

that d ∈ C ′ and f extends continuously to C ′.

Proof. This is an easy corollary of the main result that we prove later.

However, we can ask a more general question. Instead of asking only for a point

to be in the closure of the domain, we can ask about membership of a type in the domain.

Here, we fail in a more subtle way.



60

Example 6.1.5. Let M = (R,+, ·, <), the reals as an ordered field. Let p(x1, x2) be the type

generated by the formulas x1 > 0, x1 < 1/n, for n = 1, 2, . . ., 0 < x2 < x1, x2 < ax1, and

axq
1 < x2, for a ∈ R+, q ∈ Q>1.

Claim 6.1.6. p is consistent.

Proof. Let Γ be any finite subset of the above formulas. Let

m1 =
min{1/n | x1 < 1/n ∈ Γ}

2

a =
min{r | x2 < rx1 ∈ Γ}

2

m2 =
min

{

x | rxq
1 < x2 ∈ Γ ⇒ a

r = xq−1
}

2
.

Note that m2 is well-defined, since a, r, q− 1 > 0. Then, if b = min(m1,m2), (b, ab) satisfies

Γ, since for each formula x1 < 1/n, b ≤ m1 guarantees that it is satisfied, for each formula

x2 < rx1, our choice of a guarantees that it is satisfied, and for each formula rxq
1 < x2,

b ≤ m2 guarantees that bq−1 < a/r, so rbq < ab.

Claim 6.1.7. p determines a complete 1-type on the first coordinate, x1.

Proof. Since the sequence {1/n | n ∈ N} is cofinal in R towards 0, we know that x1 < r,

for every r ∈ R, r > 0, as well, we know that x1 > 0, and thus x1 > r, for every r ∈ R,

r ≤ 0. Since order type determines type, we then have that the type of x1 is completely

determined.

Claim 6.1.8. If g(x) is any M -definable function, with limx→0+ g(x) = 0, then, for some

s ∈ R, and some q ∈ Q,

lim
x→0+

g(x)

sxq
= 1.

Proof. By quantifier elimination for M (Theorem 1.3.7), we know that g is given by a

quantifier-free formula ψ(x, y), such that, for any x, ψ(x, y) holds iff y = g(x). We may

assume that, for x sufficiently close to 0, ψ is a conjunction of atomic formulas – by [Hod93],

section 2.3, ψ can be put in disjunctive normal form, and a particular element of the

disjunction must hold in a neighborhood above 0 by o-minimality. Let θ1, . . . , θk be the

atomic formulas that are equalities in ψ, with θi given by t1i = t2i , where t1i , t
2
i are terms

in variables x, y. Then note that the formula
∑k

i=1(t
1
i − t2i )

2 = 0 is satisfied if and only if
∧k

i=1 θi is, so we may assume that there is exactly one equality in ψ. Cross-multiplying, and



61

dividing through by common factors of x and y, we may assume that the equality consists

of a polynomial in x and y, with at least one term being solely a power of x, and one term

being solely a power of y. Rearrange so that the lowest power of y is alone on the left-hand

side of the equation. Then we can write the equality as

ym =
n
∑

i=1

cix
kiyli ,

with ci ∈ R, ci 6= 0, ki, li ∈ Z≥0, with (ki, li) 6= (kj , lj) for i 6= j, and if ki = 0, then li > m.

Define the functions

hi(x) = xkig(x)li , i = 1, . . . ,m.

In a neighborhood above 0, there must be a between 1 and m such that ha(x) > hi(x),

i = 1, . . . , a − 1, a + 1, . . . ,m, by o-minimality – if there were equality for hi and hj , then,

since (ki, li) 6= (kj , lj), we would obtain a direct representation of g as a fractional power of

x. Let

bi = lim
x→0+

hi(x)

hax
, i = 1, . . . , a− 1, a + 1, . . . ,m.

First, suppose that some bi > 0. Then we have

1 ≥ lim
x→0+

xkig(x)li

xkag(x)la
= lim

x→0+

(

g(x)

x
ka−ki
li−la

)li−la

> 0.

Note that li − la 6= 0, since if it were, we would have limx→0+ 1 ≤ xka−ki > 0, and ka 6= ki,

which is impossible.

If li − la > 0, then

1 ≥ lim
x→0+

g(x)

x
ka−ki
li−la

> 0,

since tli−la is continuous at and above 0. If li − la < 0, then since the expression is bounded

away from 0, there must be some N ∈ N such that

1 ≤ lim
x→0+

g(x)

x
ka−ki
li−la

< N.

In either case, we may find c ∈ R, such that

lim
x→0+

g(x)

cx
ka−ki
li−la

= 1,

proving the claim.
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Thus, we may assume that bi = 0, for all i. Restrict to an interval above 0 such

that
hi(x)

hax
<

ca
2n|ci|

,

for all i. Then we know
n
∑

i=1
i6=a

cihi(x) ≤
n
∑

i=1
i6=a

|ci|hi(x) <
n
∑

i=1
i6=a

|ci|
caha(x)

2n|ci|
<
ca
2
ha(x),

and also
n
∑

i=1
i6=a

cihi(x) ≥
n
∑

i=1
i6=a

−|ci|hi(x) ≥
n
∑

i=1
i6=a

−|ci|
caha(x)

2n|ci|
> −

ca
2
ha(x).

Thus,

−
ca
2
ha(x) <

n
∑

i=1
i6=a

cihi(x) <
ca
2
ha(x)

caha(x) −
ca
2
ha(x) <

n
∑

i=1

cihi(x) < caha(x) +
ca
2
ha(x)

ca
2
ha(x) <

n
∑

i=1

cihi(x) <
3ca
2
ha(x)

ca
2
ha(x) <

n
∑

i=1

cix
kig(x)li <

3ca
2
ha(x)

ca
2
ha(x) < g(x)m <

3ca
2
ha(x)

ca
2
xkag(x)la < g(x)m <

3ca
2
xkag(x)la

ca
2
xka < g(x)m−la <

3ca
2
xka

ca
2
<
g(x)m−la

xka
<

3ca
2
.

Note that we have la 6= m, since otherwise we would have 1 < 3ca

2 xka for x in a neighborhood

of 0, which cannot be true unless ka = 0, in which case we have li > m. Then

ca
2
<

g(x)

xka/(m−la)
<

3ca
2

ca
2
< lim

x→0+

g(x)

xka/(m−la)
<

3ca
2
.

By o-minimality, this limit exists, and by the inequalities, is not 0 or ±∞. Denote it by d.

Then

lim
x→0+

g(x)

dxka/(m−la)
= 1,
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proving the claim.

Let C be any cell with C ∈ p. We may assume that C is of the form

C = {〈x, y〉 | 0 < x < c ∧ f(x) < y < g(x)},

for some c ∈ R and some R-definable f, g.

Claim 6.1.9. There exist d1, d2 ∈ R, q1, q2 ∈ Q+, with q1 > 1 ≥ q2, such that

lim
x→0+

f(x)

d1xq1
= 1

lim
x→0+

g(x)

d2xq2
= 1.

Proof. By Claim 6.1.8, the existence of some d1, d2 and q1, q2 is guaranteed. It remains to

show that q1 > 1 ≥ q2. First, for a contradiction, assume q1 ≤ 1. Note that we can certainly

assume that f(x) ≥ 0. Then

1 = lim
x→0+

f(x)

d1xq1
≤ lim

x→0+

f(x)

d1x
,

so for sufficiently small x, d1x ≤ f(x), but since then p |= y < d1x ≤ f(x), it is impossible

that C ∈ p. Thus, q1 > 1.

Now we show that q2 ≤ 1. Suppose q2 > 1. Then we have

1 = lim
x→0+

g(x)

d2xq2
.

We know that g(x) > 0 for x > 0, so d2 6= 0. Thus, for sufficiently small x,

2d2x
q2 > g(x).

But since then p |= y > 2d2x
q2 > g(x), it is impossible that C ∈ p. Thus, q2 ≤ 1.

Claim 6.1.10. If C is any set with C ∈ p, with the function on the first quadrant

F (x, y) =











y
x y < x

1 Otherwise
,

continuous on C, then F does not extend continuously to C.
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Proof. Without loss of generality, we may assume that C is a cell, with boundaries in the

y-coordinate given by R-definable f, g. We may assume that g(x) ≤ x, so g(0) = 0, and

that f(x) ≥ 0, so f(0) = 0. Then by Claim 6.1.9, we know that there exist d1, d2 ∈ R,

q1 > 1 ≥ q2 ∈ Q such that

lim
x→0+

f(x)

d1xq1
= 1

lim
x→0+

g(x)

d2xq2
= 1.

Thus, we can restrict to an interval above 0 such that

d1

2
xq1 ≤ f(x) ≤ 2d1x

q1

d2

2
xq2 ≤ g(x) ≤ 2d2x

q2.

For x > 0, it is easy to see that F must extend to 〈x, f(x)〉 and 〈x, g(x)〉 in the natural

way, as F (x, f(x)) = limy→f(x)+ F (x, y), and similarly with 〈x, g(x)〉, since the value of F

along any curve approaching 〈x, f(x)〉 must have the same limit, by [vdD98], Chapter 6,

4.2. Then for x in this interval above 0,

d1

2
xq1−1 ≤ F (x, f(x)) ≤ 2d1x

q1−1

min

(

1,
d2

2
xq2−1

)

≤ F (x, g(x)) ≤ min
(

2d2x
q2−1

)

.

But

lim
x→0+

2d1x
q1−1 = 0 = lim

x→0+

d1

2
xq1−1

min
(

2d2x
q2−1

)

≥ min

(

1,
d2

2
xq2−1

)

> 0,

so

lim
x→0+

F (x, f(x)) = 0 < lim
x→0+

F (x, g(x)).

Since both the curves 〈x, f(x)〉 and 〈x, g(x)〉 are in C, and they both have the origin as their

limit point, we have, again by [vdD98], Chapter 6, 4.2, that F can extend continuously to

the origin only if F has the same limit along the two curves. But it does not, and since C

includes the origin, F cannot be continuously extended to C.

We may ask, then, for necessary and sufficient conditions on p, an n-type in an

o-minimal structure, we give necessary and sufficient conditions on p so that, for any F ,

a bounded definable function, there exists a definable set, C, such that: C contains any

realization of p; F is continuous on C; and F can be continuously extended to C’s closure.
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6.2 Good Bounds and i-Closures

We will be helped in answering our question by some technical results and lemmas

concerning the closures of sets. In this section, we assume that all noncuts are interdefinable

over the empty set.

Condition 6.2.1. We will be working under the following assumptions for the rest of this

section. Let p be a decreasing independent n-type over a set A, c a realization of p, i an index

in p’s coordinates, and k = N(i) > 0 (N(i) is from Definition 5.1.18). As well, we assume

that tp(cj/c<kA) is a noncut near βj(c<k) 6= ±∞ for j ≥ k. Denote β = 〈βk, . . . , βn〉.

Note that if Condition 6.2.1 is true for some c, it is true for any c0 |= p, and thus

can also be thought of as a condition just on p, A, i, and k. As well, note that, for any

p a decreasing type over A and c |= p with k = N(i) for some coordinate i and j ≥ k,

tp(cj/c<kA) is a noncut by Corollary 5.1.19.

Lemma 6.2.2. If p, A, c, i, and k satisfy Condition 6.2.1, then there is an A-definable set,

C0, containing c such that, for every a ∈ π≤k−1(C
0), C0 contains a unique point, d, with

d≤k = 〈a, βk(a)〉. Moreover, for each a (and in particular for c<k), this point is independent

of choice of C0 – in fact, it is 〈a, β(a)〉.

Proof. We assume that, for j ≥ k, cj is a noncut above βj(c<k) – the proof is not affected

by this.

By Lemma 2.2.11, for each j > k there is some A-definable k-ary function, hj ,

such that

cj < hj(c≤k), and

lim
x→βk(c<k)

hj(c<k, x) = βj(c<k).
(6.1)

Let C be an A-definable set containing c such that β is continuous on C, hj >

βj(c<k) for j ≥ k (possible since hj(c≤k) > βj(c<k)), and (6.1) holds on all of C (possible

since it holds for c – note that the limit statement is first-order). Let

B = {x | ∀j ≥ k(xj > βj(x<k)) ∧ ∀j > k(xj < hj(x≤k))}.

Let C ′ = C ∩B. Note that, since c ∈ C, c ∈ B, we know C ′ is non-empty. Now, by Lemma

1.3.15, we can decompose C ′ into definable sets, on each of which, for any a ∈ π≤k−1(C
′),

C ′
a = C ′

a – the closure of a fiber is the fiber of the closure. Let C0 be the set containing C.
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Let a ∈ π≤k−1(C
0). Let D = {a} × C0

a . Let d ∈ C0, with d≤k = 〈a, βk(a)〉. Note

that this implies d ∈ D. We want to show that d = 〈a, β(a)〉. Let γ(t) be an Aa-definable

curve in D, with γ(0) = d, and dom(γ) = (0, s), for some positive s. Then, for j > k,

dj ≥ lim
t→0+

βj(γ(t)<k) = βj(a).

Similarly,

dj ≤ lim
t→0+

hj(γ(t)≤k) = lim
y→βj(a)+

hj(a, y) = βj(a).

Thus, d = 〈a, β(a)〉.

Definition 6.2.3. Assume Condition 6.2.1 holds. Then, for any tuple a with length at

least k − 1, such that a<k ∈ π≤k−1(C
0), let

iclp(i, a) = 〈a<k, β(a<k)〉.

When p is clear from context, we may omit it, writing simply icl(i, a), and also referring to

this as the i-closure of a.

Note that icl(i, a) is an Aa<k-definable point.

Lemma 6.2.4. Assume Condition 6.2.1 holds. If tp(ci/Ac<i) is a cut, then icl(i, x) =

icl(i− 1, x).

Proof. If tp(ci/Aci−1) is a cut, then, by definition, N(i) 6= i, so N(i) ≤ i− 1. Since now the

conditions on N(i) and N(i− 1) are identical, N(i) = N(i− 1), and so

icl(i, x) = 〈x<N(i), βN(i)(x<N(i)), . . . , βn(x<N(i))〉 = icl(i− 1, x).

Definition 6.2.5. Assume Condition 6.2.1 holds. Let f be an i-ary A-definable function

such that, for some A-definable C with c ∈ C, f is continuous (as a function of the first

i coordinates), non-negative, and f extends to C such that f(icl(i, x)) = 0, for all x ∈ C.

Then we call f a good bound at i.

Note that the set of good bounds at i (for a given p) forms a vector space over A.

As well, note that, if cN(i) is a noncut near βN(i)(c<N(i)) 6= ±∞, then

mi(x≤i) = |xN(i) − βN(i)(x<N(i))|

is a good bound at i.
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Lemma 6.2.6. Assume Condition 6.2.1 holds. If f is a good bound at i then there exists

f ′ such that f ′ ≥ f on some definable set containing c, and f ′ is a good bound at i− 1.

Proof. Note that there must be a noncut at or before the i − 1 coordinate in p, otherwise

the “good bound” condition is vacuous.

We first consider the case where tp(ci/c<iA) is a noncut. By the definition of a

good bound, there is some A-definable C such that f is continuous and non-negative on C,

and f extends to C such that f(icl(i, x)) = 0 for all x ∈ C. Since ci−1 is a noncut near

some Ac<N(i−1)-definable element, assume ci−1 is a noncut above (WLOG) βi−1(c<N(i−1)),

where βi−1 is A-definable (note that βi−1 is not part of the original sequence of functions,

β). We may restrict C so that icl(i−1, x) /∈ C, since we can take C to have lower boundary

at least βi−1(x<N(i−1)) at the i − 1st coordinate. Note that, on C, icl(i − 1, x) 6= icl(i, x),

since icl(i − 1, x)i−1 = βi−1(x<N(i−1)) < xi−1 = icl(i, x)i−1. Since f is a good bound at i,

we know that f(icl(i, x)) = 0 for x ∈ C, and therefore f(icl(i, x)) < mi−1(icl(i, x)). Assume

WLOG that ci is a noncut above some α(c<i), for some A-definable α. Thus, for each x,

there is some h(x<i) such that, if xi ∈ (α(x<i), h(x<i)), f(x) < mi−1(x). Restrict C to

have upper boundary at most h on the ith coordinate. Then, on our new C, mi−1 > f , and

mi−1 is a good bound at i− 1.

Now consider the case where tp(ci/c<iA) is a cut. There is a closed Ac<i-definable

interval, J(c<i), about ci on which f(c<i,−) is continuous. Thus, for x<i in some A-

definable set containing c, say C ′′, there is J(x<i), a closed Ax<i-definable interval such

that f(x<i,−) is continuous. Let C ′ = {x ∈ C ′′ ∩ C | xi ∈ J(x<i)}, an A-definable set.

We can then let f ′(x<i) = sup{f(x≤i) | xi ∈ J(x<i)}. Clearly, f(x≤i) ≤ f ′(xi).

We must also show that f ′ is a good bound at i − 1 – that is, f ′ extends to icl(i − 1, x)

by 0, for x ∈ C ′. Since f extends to icl(i, x) = icl(i − 1, x) by 0, we know that, for any

definable curve in C with limit point icl(i, x), f(x≤i) goes to 0 on the curve. This implies

that sup{f(x≤i) | xi ∈ J(x<i)} also goes to 0 on the curve – suppose not. Then there

is a curve, γ, and ε > 0 such that, for each t > 0, there is an xi ∈ J(γ(t)<i) such that

f(γ(t)<i, xi) > ε. We can definably choose xi as a function of t (and ε), thus yielding a new

curve, γ′, with f(γ′(t)) not going to 0, contradiction.
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6.3 Main Result

Theorem 6.3.1. Let T expand the theory of an ordered group, and be such that all noncuts

are interdefinable over the empty set (e.g., T expands the theory of an ordered field). Let

A be a set. Let p be a decreasing n-type over A. Let c = 〈c1, . . . , cn〉 |= p. The following

statements are equivalent.

1. For every A-definable function, F , there is an A-definable set, C, such that c ∈ C, F

is continuous on C, and F extends continuously to C.

2. For i = 1, . . . , n, tp(ci/Ac<i) is algebraic, a noncut, a uniquely realizable cut, or an

out of scale nonuniquely realizable cut on A.

Remark 6.3.2. While the “local groups” guaranteed by interdefinability of noncuts are

actually all we need for the result, the exposition is significantly simpler with the assumption

of a global group operation. In the general case, all group operations are done on a group

chunk around an element 0, with the functions that map between noncuts allowing us to

translate all elements to that group chunk.

We first prove the “if” of Theorem 6.3.1.

Proposition 6.3.3. Let T expand the theory of an ordered group, and be such that all

noncuts are interdefinable over the empty set, let A be a set, and let p be a decreasing n-

type over A. Let c = 〈c1, . . . , cn〉 realize p. Suppose that, for i = 1, . . . , n, tp(ci/c<i−1A)

is not in scale or near scale on A (i.e., tp(ci/c<i−1A) is algebraic, a noncut, a uniquely

realizable cut, or an out of scale nonuniquely realizable cut on A). Then, for any F a bounded

A-definable function on M̄n, there is an A-definable set, C, such that F is continuous on

C, F can be continuously extended to C, and c ∈ C.

Proof. 1

We will go by induction on n, although we will also have an additional “inner”

induction. Note that, by absorbing A into our language, we may assume that A = ∅.

Henceforth in the proof, “definable” means “∅-definable,” unless otherwise indicated. Let

P be the prime model of T .

1The use of van den Dries’ result on fiberwise-continuous functions is based on the proof in [Spe08].
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Regularizing noncuts

Let the coordinates at which tp(ci/c<i) is a noncut be i1, . . . , il, and let I =

{i1, . . . , il}. Let the function of c<i over which ci is a noncut be αi.

Claim 6.3.4. It is sufficient to prove Proposition 6.3.3 in the case where no ci is a noncut

near ±∞ over ∅.

Proof. Let I+
∞ = {i ∈ I | tp(ci) = ∞−} and I−∞ = {i ∈ I | tp(ci) = −∞+}. Let q± be

the map taking the noncut near ±∞ to the noncut above 0. Then we can consider the

map ξ(x1, . . . , xn) = 〈y1, . . . , yn〉, with yi = q+(xi) if i ∈ I+
∞, yi = q−(xi) if i ∈ I−∞, and xi

otherwise.

We assume that there is a definable set C ′ containing ξ(c) such that F ◦ ξ−1 is

continuous on C ′ and extends continuously as F ◦ ξ−1 to C ′, and prove Proposition 6.3.3,

giving the claim. Replace c by ξ(c). Let I be an interval above 0 such that q± are continuous

and monotone on I. Then we can form a cell, B, from the cartesian product of M̄ and I,

with I appearing at coordinates for which i ∈ I±∞. ξ−1 is continuous on B. We may assume

that C ′ ⊆ B by intersecting C ′ with B, since for i ∈ I±∞, ci is a noncut above 0. Finally, we

may assume that, if d ∈ C ′ and di 6= 0 for any i = 1, . . . , n, then d ∈ Im(ξ), by restricting

the upper boundary functions of C ′.

Then, if we let B′ = ξ−1(B), ξ is a homeomorphism on B′. We restrict ξ to have

domain B′. Note that, since q± are continuous and monotone on I, if we consider inf(q+(I))

and sup(q−(I)), we obtain bounds, r+ and r−, such that, if a is a point in M̄n, with ai > r+

for i ∈ I+
∞ and ai < ri for i ∈ I−∞, then a ∈ B′.

Let C ′′ = C ′∩dom(ξ−1). Let C = ξ−1(C ′′). Note that, since ξ is a homeomorphism

on B′, and C ′ ∩ Im(ξ) is closed in Im(ξ), C is closed in dom(ξ). We want to show that

C is actually closed. Since we have bounded C ′ away from the right endpoint of I on

each coordinate i ∈ I±∞, we have necessarily bounded C away from r− and r+ on those

coordinates. Thus, it follows that C is closed.

We claim that F has a continuous extension, F , on C, defined by

F (x) = (F ◦ ξ−1 ◦ ξ)(x).

To prove F is continuous, take D a closed subset of M̄ ; we wish to show that F
−1

(D) ∩ C

is closed. Since ξ is a homeomorphism on a set containing C and f
−1

(D) ⊆ C, this is
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equivalent to asking if ξ(F
−1

(D)) is closed. We have

(ξ ◦ F
−1

)(D) = ξ ◦ (F ◦ ξ−1 ◦ ξ)−1(D) = ξ ◦ ξ−1 ◦ F ◦ ξ
−1

(D) = F ◦ ξ
−1

(D),

which is closed by continuity of F ◦ ξ. Thus, F is continuous on C, proving Proposition

6.3.3.

Thus, we may assume that no αi is ±∞.

Claim 6.3.5. It is sufficient to prove Proposition 6.3.3 in the case where each ci is a noncut

above αi.

Proof. This can be proved by the same method, using the map ξ′(x1, . . . , xn) = 〈y1, . . . , yn〉,

with yi = −xi if i ∈ I and ci is a noncut below αi, and yi = xi otherwise.

Making F and c n-dimensional

Claim 6.3.6. It suffices to prove Proposition 6.3.3 in the case that F is non-constant in

each coordinate in a neighborhood of c.

Proof. Suppose that F is constant in the ith coordinate in a neighborhood of c. Then we

may take D to be a definable set containing c on which F is continuous and constant in

the ith coordinate. Since no ci is a noncut near ±∞, we may assume that D is bounded.

Let π(x1, . . . , xn) = 〈x1, . . . , xi−1, xi+1, . . . , xn〉. Then let D′ = π(D). Note that π(c) ∈ D′.

For d ∈ D′, let δ(d) denote an arbitrary element of π−1(d). We can take δ to be definable.

Then define

F ′(d) = F (δ(d)),

which is well-defined by our assumption that F is constant on the ith coordinate in D, and

thus on π−1(d). Then, by induction, we may find a subset of D′ on which F ′ is continuous,

and such that F ′ extends continuously to the closure of D′. We may take D′ to be a cell

and replace D by π−1(D′)∩D. Then by Lemma 1.3.17, π(D) = π(D) = D′. We now show

directly that F is continuous on D. Let x ∈ D, and ε > 0. We can find an open B around

π(x) such that |F ′(y) − F ′(π(x))| < ε, for y ∈ B. Thus, |F (z) − F (x)| < ε, for z ∈ π−1(B),

but since π is continuous, π−1(B) is an open set containing x, and thus we have found an

open set containing x such that |F (z)−F (x)| < ε for z in this set, and thus F is continuous

on D.
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Therefore, we may assume that F is non-constant in each coordinate near c.

We can partition M̄n into ∅-definable cells on which F is continuous and monotonic

in each coordinate. The closure of (at least) one of these cells must contain c. Let D be a

cell of lowest dimension on which F is continuous, monotonic in each coordinate and whose

closure contains p.

Claim 6.3.7. It suffices to prove Proposition 6.3.3 in the case that D is open.

Proof. We suppose that D is not open and then show Proposition 6.3.3. Using the pD

defined in [vdD98], Chapter 3, 2.7, we can homeomorphically map D to pD(D), with

pD(D) ⊆ M̄m, for m < n. Note that pD is still a homeomorphism on D. Then, by in-

duction, if F ′ = F ◦ p−1
D , we can find definable C ′ such that pD(c) ∈ C ′, F ′ is continuous

on C ′, and F ′ extends continuously as F ′ to C ′. Let C = p−1
D (C ′). Note that C = p−1

D (C ′),

by [vdD98], Chapter 6, 1.7 again. Let F (x) = F ′ ◦ pD. Note that, on C, F = F . Now we

show F is continuous. Let E ⊆M be closed. Then F
−1

(E)∩C is closed iff pD(F
−1

(E)∩C)

is closed. As in the proof of Claim 6.3.4, this set can be written as pD(F
−1

(E)) ∩ C ′.

Continuing to follow Claim 6.3.4, we can write pD(F
−1

(E)) ∩ C ′ = F
′−1

(E) ∩ C ′, which is

closed by continuity of F
′
on C ′. Thus, F is continuous on C.

Inner Induction

Let f ′i , g
′
i be the definable lower and upper bounding functions in the construction

of D as a cell. We now construct new definable bounding functions fi, gi, 1 ≤ i ≤ n, starting

at i = n and going down to i = 1. Let Di be the cell defined by replacing the boundary

functions f ′j, g
′
j used to define D with fj, gj for j > i. For any x with x≤i ∈ π≤i(D), let

Ei
x = {x} ×Di

x.

We have two induction statements at stage i:

(I1) For any x ∈ π≤i(D), F (x,−) is continuous on Ei
x, and extends continuously to Ei

x.

(I2) There is a definable g(x≤i), a good bound at i, such that for any a = 〈a1, . . . , an〉 and

a′ = 〈a1, . . . , ai, a
′
i+1, . . . , a

′
n〉 with a, a′ ∈ Di, |F (a) − F (a′)| < g(a≤i).

We want to construct definable fi, gi to satisfy the inductive conditions for stage

i− 1. We are constructing F as we go, by expanding its domain. At stage i, F has domain

{x | x≤i ∈ π≤i(D)}, defined as F (b) = limt→0+ F (γ(t)), where γ(t) is any definable curve
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in Ei
x with limt→0+ γ(t) = b – some such γ exists by Lemma 2.2.10. By (I1), the limit does

not depend on choice of γ, so F is well-defined at stage i. If we satisfy (I1) for i − 1, the

same argument will show that F can be defined on domain {x ∈ Di | x<i ∈ π≤i−1(D)}.

We know that, for each x with x≤i ∈ π≤i(D
i), F is continuous on Ei

x. By Lemma

1.3.16, for any x = 〈x1, . . . , xi−1〉 ∈ π≤i−1(D), we can partition (f ′i(x<i), g
′
i(x<i)) into

intervals (and their endpoints), I1(x), . . . , Ir(x)(x), so that F is continuous on

{y ∈Mn | y<i = x ∧ yi ∈ Ijxa)},

for 1 ≤ j ≤ r. Then we can find a definable open set U ⊆ M i containing c≤i such

that r(x) is constant on U , and we denote this constant value by r. Let Ij(c≤i) be

given by (hj(c≤i), hj+1(c≤i)), for some definable hj , j = 1, . . . , r, with h1 = f ′i , and

hr+1 = g′i, with hj definable, for j = 1, . . . , r. Then we may further assume that, on

U , Ij(x) = (hj(x), hj+1(x)). Replace Di by Di ∩ {x | x≤i ∈ U}, and replace f ′i , g
′
i by

hj , hj+1, respectively, for the j such that hj(c≤i) < ci < hj+1(c≤i). Furthermore, we can

assume that, for a ∈ πi−1(D
i) Di

a = Di
a, by Lemma 1.3.15.

We must now consider three cases – when ci is a noncut over c<i, when it is a

uniquely realizable cut, and when it is out of scale (on P ). (The algebraic case is done by

openness of D.)

Case 1: tp(ci/c<iM) is a noncut

We may assume that f ′i ≤ αi, since this is true at c<i, and so we may actually

assume that f ′i = αi. We know that, for any x = 〈x1, . . . , xi−1〉 ∈ π≤i−1(D), F is continuous

on the set

{y ∈ Di | y<i = x ∧ f ′i(y<i) < yi < g′i(y<i)}.

If we then replace g′i by (g′i + f ′i)/2, we guarantee that, for x as above, F is continuous on

the set

{y ∈ Di | y<i = x ∧ f ′i(y<i) < yi ≤ gi(y<i)},

and furthermore, by our use of Lemma 1.3.15 above, this set is equal to

{y ∈ Ei
x | f ′i(y<i) < yi ≤ gi(y<i)}.

Thus, it only remains to show that F extends continuously onto the points where

yi = f ′i(y<i) = αi(y<i). But by Lemma 6.2.2, if we are given x as above, we can restrict Di
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further so there is only one such point – icl(i, x) (note that N(i) = i). We have icl(i, c) ∈

Ei
c<i

. Thus, we can find a c<i-definable curve, γ(t, c<i), such that γ(0, c<i) = icl(i, c), and

γ(t, c<i) ∈ Ei
c<i

, for t > 0. We may then assume that, for any y ∈ Di, γ(t, y<i) is a curve in

Ei
y with γ(0, y<i) = icl(i, y). Since F is bounded and continuous, limt→0+ F (γ(t, y<i)) exists,

for each y ∈ Di. Let γ1(t, y1, . . . , yi−1), γ2(t, y1, . . . , yi−1) be definable curves in Ei
y with

limit at t = 0 of icl(i, y). Fix a = 〈a1, . . . , ai−1〉 ∈ πi−1(D
i). Let rj = limt→0+ F (γj(t, a)),

j = 1, 2. Let ε be any positive number. By (I2), there exists a definable g, a good bound

at i, such that |F (y) − F (y′)| < g(y≤i), for y, y′ ∈ Di with a = y<i = y′<i. Since g is a

good bound at i, we can choose s1, s2 > 0 such that, for t ∈ (0, sj), g(γj(t, a)≤i) < ε/3 and

|F (γj(t, a)) − rj| < ε/3, j = 1, 2. Let s = min(s1, s2). Note that γ1(s, a), γ2(s, a) > αi(a).

Assume WLOG that γ1(s, a) ≤ γ2(s, a). Then, for some s′, 0 < s′ ≤ s, γ2(s
′, a) and γ1(s, a)

have the same ith coordinate. Thus, |F (γ2(s
′, a)) − F (γ1(s, a))| < g(γ1(s, a)≤i) < ε/3, and

thus |r2 − r1| < ε. Thus, r2 = r1, and so F extends continuously to icl(i, x), satisfying (I1)

for i− 1.

We must also satisfy condition (I2) for i − 1. Let g′ be the good bound at i − 1

with g′ ≥ g guaranteed from Lemma 6.2.6 (we may restrict Di so that Di is the appropriate

domain for g′). Let γ be the curve from above. Restrict its domain (possibly further

restricting Di) so that γ is monotonic in the ith coordinate. Then

S(x, z) = sup{y : |F (γ(t, x<i, y) − F (icl(i, x<i)| < z}

is a function that is decreasing in z for every x. Now replace g′i with

min(g′i(x), S(x,mi−1(x))). We have then guaranteed that applying F to any point on γ

will yield a value differing little from F applied to the i-closure point.

Then, given y, y′ ∈ Di−1 with y<i = y′<i, we can find t, t′ with γ(t, y<i)≤i = y≤i,

and similarly for t′ and y′. Then

|F (y)−F (y′)| ≤ |F (y)−F (γ(t, y<i))|+|F (y′)−F (γ(t′, y<i))|+|F (γ(t, y<i))−F (γ(t′, y′<i))|

≤ g(y≤i) + g(y′≤i) + |F (γ(t, y<i)) − F (icl(i, y<i)| + |F (γ(t′, y<i)) − F (icl(i, y<i)|

≤ 2g′(y<i) + 2mi−1(y<i).

Thus, since 2g′ + 2mi−1 is a good bound at i− 1, we have satisfied (I2) for i− 1.
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Case 2: tp(ci/c<i) is uniquely realizable or out of scale on P

Condition (I1) for i − 1 is easily satisfied, because we can choose fi and gi such

that 〈x<i, fi(x<i)〉 and 〈x<i, gi(x<i)〉 are in the interior of Di, for x<i ∈ π≤i−1(D). Thus,

we already knew, by our restriction on f ′i and g′i, that f was continuous on Di−1
x<i .

If Pr(c<i) realizes no noncuts over P , then Condition (I2) is vacuously satisfied,

so we may assume that Pr(c<i) does realize a noncut over P . Then, by Lemma 5.2.10, we

know that if tp(ci/c<i) is uniquely realizable, then no c<i-definable function takes P to a

set that is cofinal or coinitial at ci in Pr(c<i). This property holds by definition if tp(ci/c<i)

is out of scale on P . This will let us satisfy Condition (I2).

Define µ(x) = sup{F (y) | y≤i = x≤i}. The function µ will play a similar role to the

curve γ that was used in the noncut case. For x ∈ Di, note that |µ(x≤i) − F (x)| ≤ g(x≤i),

for some g a good bound at i, by (I2) for i. As well, we can find some g′, a good bound at

i− 1, such that g′ ≥ g on Di, by Lemma 6.2.6. Thus, if we can bound |µ(x≤i)− µ(x′≤i)| by

some good bound at i− 1, where x<i = x′<i, we will be done.

WLOG, assume that F is increasing in the ith coordinate. Now, consider µ−1
c<i

.

Let k = N(i) (from Definition 5.1.18). We know that k > 0, since if k were 0, then Pr(c<i)

would contain no noncuts.

Let M ′ = dcl(c<k). By Lemma 5.2.19, we know that µ−1
c<i

(M ′) is neither cofinal

nor coinitial at ci. We can thus take definable functions fi and gi such that, for yi ∈

[fi(c<i), gi(c<i)], µ(c<i, yi) /∈ M ′, and thus, tp(µ(c<i, yi)/M
′) = tp(µ(c<i, y

′
i)/M

′), for any

yi, y
′
i ∈ [fi(c<i), gi(c<i)], since for two elements to have different types over M ′, there must

be an element of M ′ between them.

Claim 6.3.8. For b, b′ elements in [f(c<i), g(c<i)], tp(|µ(c<i, b)−µ(c<i, b
′)|/M ′) is a noncut

near 0.

Proof. Suppose not. Then there is some r ∈ (0, |µ(c<i, b) − µ(c<i, b
′)|) ∩M ′. Since µ is a

bounded function (since F is), it cannot be the case that µ(c<i, b) is a noncut near ±∞

over ∅. Thus, µ(c<i, b) must be a nonuniquely realizable cut over M ′: tp(µ(c<i, b)/M
′) =

tp(µ(c<i, b
′)/M ′) and the two differ by more than r, so addition by r witnesses the type

being nonuniquely realizable. But, by Theorem 5.2.11, since tp(ck/M
′) is a noncut, and

tp(cj/M
′c<j) is a uniquely realizable cut or out of scale, for k < j ≤ i, tp(ck, . . . , ci/M

′) is

definable, and hence M ′(ck, . . . , ci) realizes no cuts over M ′, contradiction.
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Thus,

µ̃(c<i) = sup{|µ(c<i(xi) − µ(c<i, x
′
i)| : xi, x

′
i ∈ [fi(c<i), gi(c<i)]}

is a noncut near 0 over M ′.

By induction (on n), we know that µ̃ is continuous on the closure of some definable

set C, containing c<i. By Lemma 6.2.2, we know that the point a = icl(i, c)<i is in C.

As well, since any definable set containing c<i has a in its closure, we must have that µ̃

applied to a is 0: if not, µ̃(a) is M ′-definable, so µ̃(c) < µ̃(a)/2. Thus for ε < µ̃(a)/2,

|µ̃(c)− µ̃(a)| > ε, and c<i is in every M ′-definable open neighborhood of a in C. Therefore,

µ̃ is not continuous at a, contradiction.

Thus, µ̃ extends to a as 0, and is therefore a good bound at i − 1, by definition.

Since 2µ̃(x<i) > |µ(x≤i)− µ(x′≤i)| when x<i = x′<i, we can satisfy (I2) for i− 1: given x, x′

as in Condition (I2) for i− 1,

|F (x)−F (x′)| ≤ |F (x)−µ(x≤i)|+ |F (x′)−µ(x′≤i)|+ |µ(x≤i)−µ(x′≤i)| < 3g′(x<i)+2µ̃(x<i),

and thus we are done.

This concludes the proof of the “if” direction. We now do the “only if” part of

Theorem 6.3.1.

Proposition 6.3.9. Let p be a decreasing n-type over a set A, and c = 〈c1, . . . , cn〉 a tuple

realizing p, such that, for some i, tp(ci/c<iA) is a nonuniquely realizable cut, in scale or

near scale on A (equivalently, on Ac<N(i)). Then there exists a bounded definable function,

F , such that, for any definable set containing c, F is not continuous on the closure of the

set.

Proof. As before, we may assume A = ∅ and take “definable” to mean “∅-definable.” Let P

be the prime model, i.e. P = dcl(∅). We will construct a definable i-ary function, extending

it to be constant on the last n−1 coordinates, so we may assume that i = n. Let k = N(n).

Note that here, we may have that k = 0. By assumption, there is some c<n-definable

function, fc<n , such that fc<n(P ) is cofinal or coinitial at cn in dcl(Pc<n). WLOG, assume

it is coinitial. Define F (x1, . . . , xn) = f−1
x<n

(xn). Suppose that C is a definable set containing

c. Using Lemma 6.2.2, we replace C by a definable set such that C contains exactly one

point with first k coordinates 〈c<k, α(c<k)〉, where α is the definable function near which ck
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is a noncut. We may further assume that C is a cell. Let gn be the function bounding the

nth coordinate of C from above. Since fc<n(P ) is coinitial at cn in dcl(c<n), there is some

element, r, of P , such that cn < fc<n(r) < gn(c<n). Since cn is a nonuniquely realizable

cut over c<n, we can find some c<n-definable ρ such that tp(cn + ρ/c<n) = tp(cn/c<n).

WLOG, assume that fc<n is increasing. Thus, considering fc<n(r) − ρ, which is greater

than cn, we see that for some r′ < r, cn < fc<n(r′) < fc<n(r) < gn(c<n). Note that, since

F (c<n, fc<n(r)) = r, and F (c<n, fc<n(r′)) = r′, with r, r′ ∈ P , we must have P -definable

sets D1 = {x ∈ Di | F (x) = r} and D2 = {x ∈ Di | F (x) = r′}.

Again by Lemma 6.2.2, we may possibly shrink D1 and D2, keeping

c<k ∈ π<k(D1), π<k(D2), and then assume that for each set D1 and D2, there is a unique

point in the set with first k coordinates 〈c<k, αk(c<k)〉. But since both D1 and D2 are

subsets of C, and C has a unique such point, there is a common point in D1 and D2.

Since F = r on D1, and F = r′ on D2, F cannot be extended continuously to this common

point.

6.4 Application to Curves

We can derive a corollary to Theorem 6.3.1 about curves, but we must first intro-

duce some definitions.

Definition 6.4.1. Let f and g be unary functions, (not necessarily definable), each of whose

domains includes some positive neighborhood of 0. We say that f and g are comparable if,

for some s > 0, either for all t ∈ (0, s), f(t) < g(t); or for all t ∈ (0, s), f(t) = g(t); or for

all t ∈ (0, s), f(t) > g(t).

Definition 6.4.2. Let M be any o-minimal structure expanding a real closed field, and let

γ = 〈γ1, . . . , γn〉 be a (not necessarily definable) curve in Mn. Say that γ is ordered if, for

i = 2, . . . , n, γi is comparable to every function in the set

{f(γi1(t), . . . , γik(t)) | f is an M -definable k-ary function, i1, . . . , ik < i},

and γ1 is comparable to every M -definable function of t.

Note that whether or not γ is ordered does not depend on the ordering of the

coordinates of γ.
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Definition 6.4.3. Let γ = 〈γ1, . . . , γk〉 be an ordered curve in Mk. Let γ(t) denote the

sequence 〈γ1(t), . . . , γk(t)〉 ∈Mk, for t ∈M . Let

tp(γ/M) = lim
t→0+

tp(γ(t)/M) = {ϕ(x) | ∃s∀t ∈ (0, s)ϕ(γ(t))}.

Lemma 6.4.4. tp(γ/M) is a complete, consistent type.

Proof. It is clear that it is consistent, so it remains to show completeness. Consider any

formula, ϕ(x1, . . . , xk). By cell decomposition, ϕ is equivalent to a disjunction of cell defini-

tions, say
∨m

i=1 Ci. We may assume by induction on k that ∃xkϕ(x1, . . . , xk) is determined

by tp(γ/M). If it is not in tp(γ/M), then clearly ϕ is not either, so we may assume that it is.

Since ∃xkϕ(x1, . . . , xk) defines the set
∨m

i=1 π<k(Ci), we must have that 〈γ1(t), . . . , γk−1(t))

lies in the projection of the cells π<k(Ci1), . . . π<k(Cir), for t ∈ (0, s), some positive number

s, and i1, . . . , ir ≤ m. Let the kth coordinate cell definition of Cij be given by (f ij , gij ).

Thus, if f ij(γ<k) and gij (γ<k) are comparable to γk for j ≤ r, then we are done. But γ is

ordered, which is sufficient.

With this lemma, we can then talk about the type of γi over γ<iM as well. We

are now ready to prove a theorem for curves as a corollary of Theorem 6.3.1.

Theorem 6.4.5. Let M be an o-minimal structure, with T such that all noncuts are inter-

definable, and T expands the theory of an ordered group, and let γ(t) = 〈γ1(t), . . . , γn(t)〉 be

a (not necessarily definable) ordered curve in Mn, with γi(0) ∈ M , i = 1, . . . , n. Then the

following two statements are equivalent:

1. γ can be reordered so that tp(γ/M) is decreasing, and tp(γi/Mγ<i) is a noncut,

uniquely realizable cut, or out-of-scale nonuniquely realizable cut over dcl(M).

2. For any bounded M -definable function, F , there is an M -definable subset of Mn, C,

such that F is continuous on C, F extends continuously to C, and γ([0, s)) ⊆ C, for

some s > 0.

Proof. For the forward direction, let p = tp(γ/M), which is well-defined by Lemma 6.4.4.

Then, since (1) holds, p satisfies the conditions of Theorem 6.3.1, with A = M , and so we can

find the open set guaranteed by Theorem 6.3.1, which we can assume by cell decomposition

to be a cell, defined, say, by functions fi and gi, for 1 ≤ i ≤ n. This cell will satisfy our

requirements if fi(γ<i(t)) < γi(t) < gi(γ<i(t)), for i ≤ n and sufficiently small t. But since
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p must imply fi(x<i) < xi < g(x<i), we must have it for sufficiently small t, and thus, C

will contain an initial segment of the curve γ.

Inversely, if (1) does not hold, then reorder γ so that tp(γ/M) is decreasing. Since

(1) fails, Theorem 3.1 gives us an F that is not continuous on the closure of any definable

set containing p. Since any definable set containing γ in a neighborhood of the origin must

contain p, we are done.
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