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Université Claude Bernard Lyon I

October 10, 2008

Janak Ramakrishnan (U. Lyon I) Scale, decreasing types, closures October 10, 2008 1 / 22



Extending Functions to Closures1

Let γ be a curve in Mn with one endpoint the origin, and let f be an
M-definable bounded n-ary function. Can we find an initial segment of γ
and a definable set containing that initial segment on which f is
continuous, or extends continuously?
Note that we can certainly find a definable set containing γ \ {0} on which
f is continuous. The difficulty is in extending f continuously to 0, which is
equivalent to extending f continuously to the closure of the definable set.

1Patrick Speissegger raised this question with me, and parts of the following work

were done first by him in a different form, particularly one of the cases in the main

proposition.
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Definable γ works

Example

Let f (x , y) = min(1, y/x), and let γ be any definable curve in the first
quadrant with left endpoint 0.

We can take a pair of parabolas whose derivatives at 0 are the same as the
curve’s at 0, giving us a cell on which f extends continuously to the
closure.
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Let f (x , y) = min(1, y/x), and let γ be any definable curve in the first
quadrant with left endpoint 0.

We can take a pair of parabolas whose derivatives at 0 are the same as the
curve’s at 0, giving us a cell on which f extends continuously to the
closure.

γ(t) = 〈t, t/4 + t3/5〉
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Definable γ works

Example

Let f (x , y) = min(1, y/x), and let γ be any definable curve in the first
quadrant with left endpoint 0.

We can take a pair of parabolas whose derivatives at 0 are the same as the
curve’s at 0, giving us a cell on which f extends continuously to the
closure.

What about the question for non-definable curves? Given a (non-definable)
curve, can we find a set on which the function is continuous, which contains
the curve, and on whose closure the function extends continuously?
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Restricting to Good Curves

Clearly, we must impose some conditions on our curves.

Important point is that components of curve (and every definable
function of them) are eventually comparable to any definable
function. Motivates:
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Comparing Curves

Definition

Let f and g be unary functions (not necessarily definable), each of whose
domains includes some positive neighborhood of 0. f and g are
comparable if, for some s > 0, one of a) for all t ∈ (0, s), f (t) < g(t); b)
for all t ∈ (0, s), f (t) = g(t); or c) for all t ∈ (0, s), f (t) > g(t).

We must now express the idea of any definable function of the curve
components being comparable to every definable function:
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Ordered Curves

Definition

Let M be any o-minimal structure, and let γ = 〈γ1, . . . , γn〉 be a (not
necessarily definable) curve in Mn. Say that γ is ordered if, for
i = 2, . . . , n, γi is comparable to every function in the set

{f (γi1(t), . . . , γik (t)) | f is an M-definable k-ary function, i1, . . . , ik < i},

and γ1 is comparable to every M-definable function of t.

Note that whether or not γ is ordered does not depend on the ordering of
the coordinates of γ.
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Ordered Failure

Let M = (R,+, ·, <, 0, 1). Let f (x , y) be min(1, y/x), and let
γ(t) = 〈t,−t/ ln t〉, so γ is undefinable in M. Note, though, that
since γ is definable in the o-minimal expansion of M, (R,+, ·, <, exp),
γ is certainly ordered.

−1/ ln t goes to 0, but it is also greater than td , for any d > 0, for
sufficiently small t. Thus, −t/ ln t is greater than t1+d , but less than
at, for every a ∈ R+.

It is not hard to see that any definable set in (R,+, ·, <, 0, 1) that
contains γ must contain the curve 〈t, at〉, for some real positive a.
But then it will also contain the curve 〈t, at/2〉.

f cannot be continuously extended onto this set’s closure, because
the limit along the first curve is a and the second curve is a/2.
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Why Did γ Fail?

The failure of γ can be seen as coming from the fact that we could not
squeeze γ sufficiently to keep out incompatible curves, because the gap
between a linear function and a higher-power function is too great. To
more closely analyze this, we can abstract out the “type” of γ.
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The Limit Type of a Curve

Lemma

Let γ = 〈γ1, . . . , γk〉 be an ordered curve. Let γ(t) denote the sequence
〈γ1(t), . . . , γk(t)〉 ∈ Mk , for t ∈ M. Then limt→0+ tp(γ(t)/M) exists, in
the following sense: for each formula ψ(x1, . . . , xk) in M, there is some
s > 0 such that either ψ(γ(t)) holds for all t ∈ (0, s), or ¬ψ(γ(t)) holds
for all t ∈ (0, s).
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Curve Limit Type Determines Definable Set Membership

Definition

With γ as above, let tp(γ/M) denote limt→0+ tp(γ(t)/M). We can then
talk about the type of γi over γ<iM.

Fact

Let γ be an ordered curve. Then, for any definable C, there exists an
s > 0 such that γ((0, s)) ⊆ C if and only if C ∈ tp(γ/M).
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Back to Bad γ

We now return to γ(t) = 〈t,−t/ ln t〉, and examine tp(γ).

For every r > 0 ∈ R+, x1 < r is in tp(γ).

For every r ∈ R+, x2 < rx1 is in tp(γ).

For every r ∈ R, q ∈ Q+, x2 > rx1+q
1 is in tp(γ).
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Failure of Continuity Extension for a Type

Since we have equivalence of definable set membership for curves and their
types, we can rephrase our failure with γ as follows:

Example

Take our model to be (R,+, ·, <, 0, 1). Let p(x , y) be the type which says
that x is greater than 0 but less than every real, and that y is less than rx ,
for any r ∈ R+, but greater than rx1+q, for any r ∈ R, q ∈ Q+. It is easy
to see that these conditions generate a complete consistent type. Let f be
as before, min(1, y/x).
There is no definable set, C , such that C ∈ p, f is continuous on C , and f
extends continuously to C .

If we let 〈c1, c2〉 |= p, the problem here is that the pre-images of elements
of R under f (c1,−) are coinitial at c2 in R(c1).
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Scale

Definition (∼Marker-Steinhorn)

Let A ⊂ B , and p ∈ S1(B), with p a cut over B . Let c be any realization
of p. If there is a B-definable unary function, f , such that f (A) is both
cofinal in B below c and coinitial in B above c , we say that p is in scale
on A. Otherwise, if there is such an f with f (A) cofinal or coinitial, but
not both, we say that p is near scale on A. If no such f exists, we say that
p is out of scale on A.
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Scale examples

Let M = (R,+, ·, 0, 1, <). Let N = M(ε), where ε is infinitesimal. For
compactness of notation, let P = R+.
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√
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√
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b b b b b b
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Pε2
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p is out of scale on M.

3 Let M = (Qrcl,+, ·, 0, 1, <), and let N = M(ε). If c |= p = tp(πε/N),
then p is in scale on M since, if f (x) = xε, f (M) is both cofinal and
coinitial at c in N.
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More examples of scale

4 Let M(R,+, ·, 0, 1, <) and let N = M(ε). Let c be smaller than every
real, but larger than εd , for any rational d > 0.

b b b

0 ε c

R+

tp(c/N) is near scale on M since, if f (x) = x , f (M) is coinitial at c
in N. However, note that, if we take N ′ = M(c), then ε is a noncut
over N ′, so the scale issue does not arise.
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5 Let M = (R,+, ·, 0, 1, <) and N = M(ε), and let c be smaller than rε
for r ∈ R+, but larger than εq for q ∈ Q>1.

Pε
b

c

Pε2
b b b

Pε1.4
b b b

Pε1.1
b b b

tp(c/N) is near scale on M since, if f (x) = xε, f (M) is coinitial at c
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Leaping to Conclusions

If we look at our examples, we see that, in addition to 5, 3, with 〈ε, πε〉, is
easily seen to have the same failure, with the same function of
min(y/x , 1). So there are problems if a coordinate is near scale or in scale
over the previous ones.
So perhaps each coordinate of the type being out of scale over the
previous ones is the necessary criterion.
But 4 shows that we must be more careful – while 〈ε, c〉 has the second
coordinate near scale over the first, if we reverse the coordinates, 〈c , ε〉 is
just one infinitesimal followed by another, and it is not hard to show such
a type cannot yield a counterexample.
Since order matters as to the scale of a coordinate of a type over the
previous ones, our goal is to give a presentation of the type that will enable
us to examine whether one coordinate is out of scale over the previous
ones without having the rug pulled out from under us via a reordering.
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Decreasing Types: The Order

Definition

Let A be a set. Define a ≺A b iff there exists a′ ∈ dcl(aA) such that
a′ > 0, and (0, a′) ∩ dcl(bA) = ∅. Define a ∼A b if a 6≺A b and b 6≺A a.
Finally, let a -A b if a ∼A b or a ≺A b.

This definition captures the idea that a is infinitesimal relative to b over A,
or at least that some element of dcl(Aa) is.

Lemma

∼A is an equivalence relation, and ≺A totally orders the ∼A-classes.
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Decreasing Types: Definition

Definition

Assume that we have a fixed sequence c = 〈ci 〉i∈I . Then the ≺i -ordering
is the ≺c<i

-ordering. If we also have a fixed base set, A, then it will be the
≺Ac<i

-ordering.

Definition

Let p(x1, . . . , xn) ∈ Sn(A). p is decreasing if, for some (any) realization,
c = 〈c1, . . . , cn〉 of p, cj -i ci , for j > i .

Lemma

Any n-type can have its coordinates reordered so that it is decreasing.
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Theorem

Theorem

Let M be an o-minimal structure expanding a real closed field. Let
p ∈ Sn(M) be a decreasing type “near” the origin. Then the following two
conditions are equivalent:

1 For c = 〈c1, . . . , cn〉, some (any) realization of p, tp(ci/c<iM) is a
noncut, or out of scale on M, for i = 1, . . . , n.

2 For every M-definable function, f , bounded on some M-definable set
in p, there is an M-definable set, C , in p, such that f is continuous
on C and extends continuously to cl(C ).

Janak Ramakrishnan (U. Lyon I) Scale, decreasing types, closures October 10, 2008 19 / 22



Sketch of Backward Proof

The backward direction is fairly straightforward. Suppose that we have
failure of the first condition. Then, at some coordinate, say the last one,
we have some Mc<n-definable function, g , such that g(M) is near scale or
in scale on M at cn.
Consider f = g−1 as a function of c<n and x . If C is any definable set
containing c , we can choose a 6= b ∈ M such that g(a), g(b) ∈ Cc<n , and
then, letting γ1 and γ2 be curves given by taking the pre-images of a and
b under f , we get that it is impossible for f to extend continuously to the
closure of C .
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Sketch of Sketch of Backward Proof
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f (x) = a for x ∈ γ1, f (x) = b for x ∈ γ2.
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Conclusion

With the theorem, our original case of a curve is resolved, by taking the
curve’s limit type.
While in this case, we were restricted from taking types that were
interdefinable with our original, in circumstances where one can (for
example, when examining definability), decreasing types allow for tighter
results, since all near scale and in scale types can be removed – even our
example of 5 disappears.
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