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Introduction Examples Proof Economics Future work

Background

The definition: an o-minimal structure is an ordered structure, M,
such that every definable subset of M1 is the union of finitely many
points and intervals.

In o-minimality, we have the cell decomposition theorem, which allows
us to partition definable sets into finitely many cells such that each
cell has the definable properties that we want.

Following from this, we have uniform finiteness – for a definable
family of finite sets, there exists a finite bound on the size of the sets
in this family.
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Question

Let M be an o-minimal group. Let (P,≺) be a total M-definable
linear order. What does P look like?

The simplest definable linear orders are the lexicographic ones on Mn.
We use <lex to denote the lexicographic order.
Obviously, a definable linear order can be a definable subset of such a
lexicographic order, or the image of such a subset under a definable
injection.

Theorem: That’s it.
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Answer

Theorem A

Let M be an o-minimal group, let (P,≺) be an M-definable linear order
with n = dim(P). Then there is an injection, g : P → M2n+1, definable
over the same parameters as P, such that g is an embedding of (P,≺) in
(M2n+1, <lex), and the projections of g(P) to the odd coordinates are
finite.

Remark

In fact, we only need M to eliminate imaginaries and have a definable
order-reversing bijection from M to M.

Remark

When M expands an ordered field, we can reduce the dimension of the
target space to n + 1, with finite projection only to the last coordinate.
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Prior Work

Steinhorn has unpublished work that implies Theorem A when
dim(P) = 1.

Steinhorn and Onshuus recently showed that a definable linear order
could be broken up into finitely many pieces, on each of which
Theorem A held.

However, their result did not say how the order compared elements in
different pieces, so the study of definable linear orders could not be
reduced to the study of definable subsets of lexicographic orders.

They also noted that such a result has applications in economics.
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One-dimensional interleaving

Example

Let P = (0, 1) ∪ (1, 2), with the order ≺ defined to agree with < on
(0, 1)× (0, 1) and (1, 2)× (1, 2), and defined as a ≺ b iff a ≤ b − 1 on
(0, 1)× (1, 2).

.25 ≺ .5 ≺ 1.5 ≺ .75 ≺ 1.8 ≺ 1.9

The embedding:

Send a ∈ (0, 1) to 〈a, 0〉. Send b ∈ (1, 2) to 〈b − 1, 1〉.

Janak Ramakrishnan (U. Lyon I) Linear orders and o-minimality 7 Juin 2010 6 / 22



Introduction Examples Proof Economics Future work

One-dimensional interleaving

Example

Let P = (0, 1) ∪ (1, 2), with the order ≺ defined to agree with < on
(0, 1)× (0, 1) and (1, 2)× (1, 2), and defined as a ≺ b iff a ≤ b − 1 on
(0, 1)× (1, 2).

.25 ≺ .5 ≺ 1.5 ≺ .75 ≺ 1.8 ≺ 1.9

The embedding:

Send a ∈ (0, 1) to 〈a, 0〉. Send b ∈ (1, 2) to 〈b − 1, 1〉.

Janak Ramakrishnan (U. Lyon I) Linear orders and o-minimality 7 Juin 2010 6 / 22



Introduction Examples Proof Economics Future work

General position

Example

Let M = (R, <,+, 0) and let n > 0. Let
P = {〈x1, . . . , x2n+1〉 ∈ M2n+1 | xi ∈ {0, 1} for i odd}. Let ≺ be the
lexicographic order on P.

P is already embedded in M2n+1, but there is no definable embedding in
(Mm, <lex) for any m < 2n + 1.
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Why 2n + 1?

This example helps to show why we need dimension 2n + 1 – there may be
only finitely many possibilities for coordinate k, say {1, . . . , r}, with the
next coordinate lying in an unbounded interval.
With a field, we can map that unbounded interval into finitely many
bounded disjoint intervals, one around each of 1, . . . , r .
But with a group, an unbounded interval cannot be mapped into a
bounded interval, so we cannot perform this procedure.
On the other hand, if there are two consecutive coordinates with finitely
many possibilities, the group can take them into one coordinate,
accounting for the alternation.
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One dimension

One dimension: “monotonicity” for orders

Lemma (Steinhorn, Onshuus and Steinhorn)

Let M be an o-minimal group and let (P,≺) be a definable linear order
with dim(P) = 1. Then P is definably isomorphic to a finite union of cells
on each of which the induced < and the induced ≺ agree everywhere

For this lemma, and throughout the proof, it helps to note that, if X is a
definable family of sets, parametrized by a set A, we can partition A such
that on each subset, the family varies continuously.
We use this fact with the family {y ∈ P | x ≺ y}x .
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One dimension

One dimension: strategy

After applying the monotonicity lemma, we have P = I1 ∪ . . . ∪ Ik ,
where each Ij is a 0- or 1-dimensional cell, and ≺ and < agree on
each Ij .

By induction, we can suppose that I1 ∪ . . . ∪ Ik−1 can be mapped to
P ′, a definable subset of M3 ordered lexicographically, and our task is
to insert Ik .

We can partition Ik into “well-behaved” pieces, relative to P ′, and
insert them one by one, keeping the remaining pieces “well-behaved”
with respect to our new P ′.
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One dimension

Partitioning Ik

Each point of Ik is in some Dedekind cut of P ′.

Either the cut is just after an element of P ′, or just before, or it is a
“dense” cut.

We would like to partition Ik into pieces such that for each piece,
either every element is just after or just before an element of P ′, or
every element is in the same cut of P ′.

We must show that each cut can contain either a single element of Ik
or an infinite number of elements, and there are only finitely many
cuts in the second case.
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n dimensions

n dimensions: Two dimension-counters

Definition

For x ∈ P, let pdim(x) := min{dim((y , z)≺) | x ∈ (y , z)≺}.

pdim(x) measures what the dimension of P is in a ≺-neighborhood of x .

Definition

For x , y ∈ P, let xEy if the ≺-interval bounded by x and y has dimension
< n.

E is a ≺-convex equivalence relation on P.
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n dimensions

E -classes and pdim cells

Lemma

No E -class has dimension n.

If there were, we would have a definable n-dimensional ≺-convex set such
that any ≺-interval inside it had dimension < n. An argument shows that
this cannot happen.

Let C be a cell decomposition of P such that on each cell C ∈ C, we have
constant pdim.
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n dimensions

Induction or else

Lemma

If every open cell in C has pdim < n, then Theorem A follows.

The premise implies that P/E has dimension < n.

By induction, P/E definably embeds in a lexicographic order. Also by
induction, for each x ∈ P/E , the class [x ]E definably embeds in a
lexicographic order.

With some careful stitching together while keeping track of
dimensions, the theorem is proved.
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Introduction Examples Proof Economics Future work

n dimensions

Induction or else

Lemma

If every open cell in C has pdim < n, then Theorem A follows.

The premise implies that P/E has dimension < n.

By induction, P/E definably embeds in a lexicographic order. Also by
induction, for each x ∈ P/E , the class [x ]E definably embeds in a
lexicographic order.

With some careful stitching together while keeping track of
dimensions, the theorem is proved.

Janak Ramakrishnan (U. Lyon I) Linear orders and o-minimality 7 Juin 2010 14 / 22



Introduction Examples Proof Economics Future work

n dimensions

Induction or else

Lemma

If every open cell in C has pdim < n, then Theorem A follows.

The premise implies that P/E has dimension < n.

By induction, P/E definably embeds in a lexicographic order. Also by
induction, for each x ∈ P/E , the class [x ]E definably embeds in a
lexicographic order.

With some careful stitching together while keeping track of
dimensions, the theorem is proved.

Janak Ramakrishnan (U. Lyon I) Linear orders and o-minimality 7 Juin 2010 14 / 22



Introduction Examples Proof Economics Future work

n dimensions

Induction or else

Lemma

If every open cell in C has pdim < n, then Theorem A follows.

The premise implies that P/E has dimension < n.

By induction, P/E definably embeds in a lexicographic order. Also by
induction, for each x ∈ P/E , the class [x ]E definably embeds in a
lexicographic order.

With some careful stitching together while keeping track of
dimensions, the theorem is proved.

Janak Ramakrishnan (U. Lyon I) Linear orders and o-minimality 7 Juin 2010 14 / 22



Introduction Examples Proof Economics Future work

n dimensions

Or else

We know that there is an open cell, C , with pdim = n on C .

Lemma

n ≤ 1.

We follow a technique of Hasson and Onshuus, and pick a definable curve
Γ in C . After restricting/redefining Γ, we may suppose that “<” and ≺
agree on Γ.
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n dimensions

Fibres

Let T : P → Γ be a partial function, defined by
T (x) := inf≺{y ∈ Γ | y � x}.
T (x) is the smallest element in Γ at least as big as x .

By fiber arguments, the set T−1(y) has dimension < n for all but
finitely many points of Γ, and we may restrict to some definable piece
of Γ where k = dim(T−1(y)) is constant.

Let b ≺ c be elements in this piece of Γ.

Looking again at fibers,

n = dim((b, c)≺) ≤
⋃

x∈(b,c]≺∩Γ

T−1(x) = 1 + k.

We want to show that k = 0.
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By fiber arguments, the set T−1(y) has dimension < n for all but
finitely many points of Γ, and we may restrict to some definable piece
of Γ where k = dim(T−1(y)) is constant.

Let b ≺ c be elements in this piece of Γ.

Looking again at fibers,

n = dim((b, c)≺) ≤
⋃

x∈(b,c]≺∩Γ

T−1(x) = 1 + k.
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n dimensions

Bringing in pdim

Let a ∈ (b, c)≺ ∩ Γ, and suppose that k > 0. Then we can choose
d ∈ T−1(a) \ {a}.
Note that (d , a)≺ ⊆ T−1(a). Thus
dim((d , a)≺) ≤ dim(T−1(a)) ≤ k < n. But a ∈ C , so
dim((y , a)≺) < n for all y , contradiction.

Thus, k = 0, so dim(P) = n ≤ 1 + 0.
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Results in Economics

The connections between this topic and economics are very strong.

An article by Beardon et al (2002), “Lexicographic decomposition of
chains and the concept of a planar chain” in the Journal of
Mathematical Economics contains an idea very close to a central
idea of this proof.

When a linear order has a suborder that is cofinal, coinitial, and
Dedekind complete, the order can be decomposed with an equivalence
relation.

After several repetitions, one shows the existence of an embedding of
one piece of the order in (R2, <lex).

The procedure is extremely non-definable, and it is not clear how to
decide if an order has such a suborder.

They only consider embeddings in (R2, <lex).
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Searching for utility functions

For many years, economists thought that all orders embedded in R.
In 1954, Dubreu pointed out to them the obvious fact that the
lexicographic order on R2 does not embed in R. An order that does
not embed in R is called “non-representable”.

Beardon et al give an analysis of non-representable orders: if a
non-representable order does not contain ω1 or ω∗1, and has a
representable uncountable suborder, then there is a non-representable
uncountable suborder that embeds in (R2, <lex).
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When can pdim be bad?

The proof showed that pdim(x) cannot be n on an n-dimensional set for
n > 1.

Question

Are there “tame” model-theoretic structures in which this does not hold
for definable linear orders?
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Partial orders

We can ask if there exists a classification of definable partial orders,
like the one that we have given for total orders.

Clearly, this is much more difficult. For example, any family of
definable sets is a partial order, with the order relation of inclusion.

Nevertheless, we can ask:

Question

Let M be an o-minimal group, and let (P,≺) be a definable partial order.
Does there exist a definable total order, (P,≺′), such that ≺′ extends ≺?
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A tenuous connection to real model theory

Hasson and Onshuus proved that any infinite definable partial order in
an o-minimal structure interprets an infinite total order.

Unfortunately, their proof is very “local” and doesn’t work for our
question.

A perhaps simpler question: is there a total extension of ≺ such that
adding it to the structure preserves o-minimality?

This question is related to a result of Chernikov and Simon: let M be
a structure with NIP. Then it is possible to add a total order to M
while preserving NIP.
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