Interpretable groups are definable

Janak Ramakrishnan (Joint work with Pantelis Eleftheriou and Kobi Peterzil)

CMAF, University of Lisbon http://janak.org/talks/int-groups.pdf

Result

Theorem

Let G be an interpretable group in an arbitrary dense o-minimal structure M. Then G is definably isomorphic to a definable group that is a subset of a cartesian product of one-dimensional definable groups.

- Note: the definable isomorphism may require more parameters than those used to define G.
- When M expands a group, the theorem is trivial. Thus, the principle of the proof is to use the existence of the group G to accomplish what the group on M would normally do.

Definitions

- An *o-minimal* structure M is a linearly ordered structure in which every first-order definable subset of M is a finite union of points and intervals (due to Pillay, Steinhorn).
- We will only consider densely ordered o-minimal structures.
- A structure (G, ...) is *interpretable* in M if there is a definable set $X \subseteq M^k$ and definable equivalence relation E such that G is isomorphic to X/E and all the structure on G is definable on X/E in M.

Strategy

Our strategy requires a number of approaches on different aspects of o-minimality.

- As with definable groups, we endow *G* with a group topology with a definable basis.
- When G is definably simple (non-abelian with no definable nontrivial normal subgroup) and definably connected, we can repeat the proof of Peterzil-Pillay-Starchenko using this group topology.
- The proof of [PPS] yields an embedding of G into GL(n,R) for some definable real closed field R. Since GL(n,R) is a definable group, this finishes the theorem.
- When G is definably compact, we use a strategy similar to Edmundo's in the case of solvable groups to obtain strong definable choice for M^{eq} -definable subsets of G.
- Strong definable choice means that for any definable family $\{X_t \subseteq G : t \in T\}$, there is a definable function $f : T \to G$ such that $f(t) \in X_t$ and f(t) = f(s) if $X_t = X_s$.

- A general result: for interpretable X/E, we can take $X \subseteq I_1 \times \cdots \times I_k$, with each interval I_j the image of X/E under a definable map f_j .
- Applying this result to definably compact G and using strong definable choice on the sets given by the preimages of the f_j 's, we have one-dimensional subsets of G.
- We prove a general result that any one-dimensional equivalence relation can be eliminated that is, if $\dim(X/E) = 1$, then X/E is in definable bijection with a one-dimensional definable set.
- Thus, any one-dimensional subset of G is in definable bijection with a one-dimensional subset of M.
- We want these one-dimensional subsets to be embedded in definable groups, so we can definably choose representatives of each equivalence class in *G*.
- We then prove that if $f: I \times J \to M$ is a definable function, monotonic in both coordinates, then either I or J can be definably embedded in a definable one-dimensional group.
- Applying to the group operation on I_i yields the desired result.

Topology

The definition of the topology depends on the following:

Lemma

Let X be a definable set and E a definable equivalence relation on X. Then there are definable Y and E' such that X/E = Y/E' and Y admits a partition into finitely many definable sets, U_1, \ldots, U_m , respecting E', such that in each set, all equivalence classes have dimension d and projection onto the first d coordinates is a homeomorphism. Moreover, each U_i is an open subset of M^{k_i} .

Thus, from now on, we will assume that after a finite partition, all equivalence classes have the same homeomorphism type, and the base set X is open in its ambient space.

What to Expect

In this talk, I will:

- define the topology;
- sketch the proof that one-dimensional quotients can be eliminated;
- give some idea why if $f: I \times J \to M$ is a definable function monotonic in both coordinates, then either I or J can be definably embedded in a definable one-dimensional group.

- We suppose that each equivalence class is open in the first d coordinates. Then for each $x \in \pi_{\leq d}(U) \subseteq M^n$, the fiber of U above x has a single representative in each E-class.
- For $u \in U$, let U(u) be the fiber of U above u.
- Let $u = \langle x', x'' \rangle$ be a generic element of U, and let $\mathcal V$ be a definable basis of neighborhoods of x'', all contained in U(u). Then the family $\mathcal B = \{g\mathcal V: g \in G\}$ is a basis for a topology (t-topology) making G into a topological group.
- The t-topology makes G into a topological group because it comes from the usual order topology, so there is a canonical homeomorphism between a neighborhood V of x'' in U(u) and a t-neighborhood of u.
- Thus, definable maps from G to M^d and M^k to G are continuous at generic points, since we may actually consider them to be coming from/going to U(g) for g generic in U.
- By methods of Maříková, this shows that G is a topological group with the t-topology.

We do not have a finite atlas (yet) on G with this topology. However, what we have is not too bad:

Proposition

There are finitely many t-open definable sets W_1, \ldots, W_k whose union covers G. Each W_i is the (non-injective!) image of U_0 , where U_0 is a finite disjoint union of definable open subsets of various M^{r_i} 's.

This implies that every definable subset of G has finitely many definably connected components, and thus that many properties of definable groups in o-minimal structures still hold. In particular, this is enough for the definably simple non-abelian case, with [PPS]'s arguments.

- We perform o-minimal tricks to make all the X_t 's cells in M^k of the same dimension r.
- If r = k, then each X_t is uniquely determined by its "boundary cells," and we are done by induction.
- There are two kinds of points in the X_t 's those that belong to only finitely many X_t , and the others. We partition each X_t into these two sets, X_t^0 and X_t' .
- The union of all X'_t has dimension less than k, by straightforward dimension arguments, so it is done by induction.

One-dimensional interpretable sets

- The proof for definably compact groups goes by first showing that definably compact groups have strong definable choice.
- This then allows us to definably pick one-dimensional *interpretable* sets in the group *G*, into whose cartesian product we can suppose that *G* is embedded.
- Thus, if we can show that these one-dimensional interpretable sets are actually definable and embeddable in one-dimensional groups, we will be done.

Theorem

Let $T \subset M^{eq}$ have dimension 1. Then there exists a definable injective map $f: T \to M^m$ for some m.

We consider $\{X_t : t \in T\}$ a definable family, with $T \subset M^{eq}$ and dim T = 1, and show that the desired map exists for this T, by induction on the ambient space of the X_t 's. Then we are done by considering $\{[t] : t \in T\}$.

- Further partitioning X_t^0 , we can suppose that it is the graph of a function f_t on a cell C_t , with distinct X_t^0 's disjoint.
- By induction, we have the desired function for the family $\{C_t: t \in T'\}$, where T' is T modulo the equivalence relation $C_s = C_t$. So we need to separate out X_t 's projecting to the same C_t .
- For each C_t , if only finitely many X_t^0 project onto C_t , then we can take care of them.
- If infinitely many X_t^0 project onto C_t , then since dim T=1, there are only finitely many such C_t . For each one, we can fix $\bar{a} \in C_t$, and define $g(t) = f_t(\bar{a})$.
- (This step fails in higher dimension, since we would have to pick infinitely many such points.)

Group-intervals

- We have now reduced the problem of definably compact G to showing that one-dimensional definable subsets of G embed in definable groups.
- Every point of such a set is non-trivial (has a definable group chunk) around it. But we need a group chunk that contains the whole set, up to a finite partition.

Definition

Let I be a gp-short interval if after a finite partition, it can be definably endowed with the structure of a group chunk, with 0 either an endpoint of I or in I.

Lemma

Let $\{I_t : t \in T\}$ be a definable family of gp-short intervals, all with the same left endpoint. Then $\bigcup_t I_t$ is a gp-short interval.

No demands are made on how the group chunks on I, I_t are defined.

Everything Interesting is gp-short

Theorem

Let I, J be intervals, and $f: I \times J \to M$ a definable function strictly monotone in both variables. Then at least one of I or J is gp-short. Some steps on the way to the proof:

- If $f: I_1 \times ... \times I_k \to J$ is definable with J gp-short and all I_i gp-long, then f is constant at every generic point.
- If $f: I_1 \times I_2 \times J \to M$ is definable with J gp-short but I_1, I_2 gp-long, then for generic $a \in I_1 \times I_2$, the function f(a, -) is determined (up to finite) by f(a, d) for any generic d.
- If $f: I_1 \times I_2 \times I_3 \to M$ is definable with I_1, I_2, I_3 gp-long, then we can partition I_1, I_2, I_3 so that the functions f(a, -) and f(b, -) on I_3 are identical if they ever have the same value.
- So families of functions parameterized by gp-long intervals are one-dimensional, i.e., locally modular.

Proof:

- Let $(a, b) = \bigcup_t I_t$. If we can find $c \in (a, b)$ such that (c, b) is a group interval, then we will be done, since some I_t contains (a, c).
- If there is $c \in (a, b)$ with a definable injection from (c, b) to (d, e) for some a < d < e < b, again we are done.
- Thus, we may assume that there are no such maps for any c, and thus that our structure has no "poles," treating b like ∞ .
- This allows us to pick a nonstandard c < b, show that (a, c) is gp-short, and then bring down this group operation to the trace of (a, c) on M, which is just (a, b).

- The standard machinery of local modularity gives a group operation around $x_0 \in I$ by $x_1 + x_2 = x_3 \iff f_{x_0}^{-1} f_{x_3} = f_{x_0}^{-1} f_{x_1}$.
- This operation is valid whenever the intervals (x_1, x_0) and (x_2, x_0) are gp-short.
- But being gp-short is not a definable property, so the operation "spills over" onto a longer interval, which is necessarily gp-long, contradiction.

Applying the Theorem

- By an argument, if $h: I_1 \times \ldots \times I_{k+1} \to M^k$ is a definable map injective in each coordinate separately, then at least one of I_1, \ldots, I_{k+1} is gp-short.
- Let I be a one-dimensional set definable in G. Let $f_i: I^i \to G$ be defined by $f_i(x_1, \ldots, x_i) = x_1 \cdots x_i$.
- Take $k \ge 1$ maximal such that f_k is injective on B, some cartesian product of gp-long intervals in I^k .
- We will find a generic k+1-tuple $\langle a_1,\ldots,a_{k+1}\rangle\in I^{k+1}$ and a box B' around it such that $f_{k+1}(B')$ is contained in $f_k(B)\cdot a_{k+1}$.
- This is enough, because then we are mapping a k+1-dimensional set injectively in each coordinate into a k-dimensional set.

- Define the equivalence relation E' on I^{k+1} by $xE'y \iff f_{k+1}(x) = f_{k+1}(y)$.
- Since f_{k+1} is not injective on any gp-long box, this implies that $[\bar{a}]$ is infinite.
- Because $f_k \upharpoonright B$ is injective, the projection of $[\bar{a}]$ on the k+1-coordinate is injective, and so the image of $[\bar{a}]$ contains a gp-long interval, J.
- We can take J to be definable over parameters independent from \bar{a} . Then we can find a gp-long box B' containing \bar{a} such that every $x \in B'$ has [x] projecting in the k+1-coordinate onto J, and thus in particular containing a_{k+1} .