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Background

@ We work here with o-minimal structures (the real field is the classical
example).
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Background

@ We work here with o-minimal structures (the real field is the classical
example).

@ A structure is o-minimal iff it is linearly ordered and any definable
subset is a finite union of points and intervals.

@ In an o-minimal structure, M, for any definable n-ary function, there
exists a decomposition of M" into finitely many definable “cells” such
that the function is continuous on each cell.

@ A consequence: every definable function in an o-minimal structure is
“eventually” continuous, monotone, and unchanging in sign.

@ To verify that a function is continuous on a definable set, it suffices
to show that, for any two definable curves with the same endpoint,
the limit of the function along the curves is the same.
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Extending Functions to Closures?

Let v be a curve in M” with one endpoint the origin, and let f be an
M-definable bounded n-ary function. Can we find an initial segment of
and a definable set containing that initial segment on which f is
continuous, or extends continuously?

!Patrick Speissegger raised this question with me, and parts of the following work
were done first by him in a different form, particularly one of the cases in the main

proposition.
April 15,2009 3/ 30
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Extending Functions to Closures?

Let v be a curve in M” with one endpoint the origin, and let f be an
M-definable bounded n-ary function. Can we find an initial segment of
and a definable set containing that initial segment on which f is
continuous, or extends continuously?

Under reasonable assumptions, we can find a definable set containing
v\ {0} on which f is continuous. The difficulty is in extending f
continuously to 0, which is equivalent to extending f continuously to the
closure of the definable set.

!Patrick Speissegger raised this question with me, and parts of the following work
were done first by him in a different form, particularly one of the cases in the main
proposition.
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Definable v works

Let f(x,y) = min(1, y/x), and let v be any definable curve in the first
quadrant with left endpoint 0.
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Definable v works

Let f(x,y) = min(1, y/x), and let v be any definable curve in the first
quadrant with left endpoint 0.

We can take a pair of definable curves whose derivatives at 0 are the same
as the curve's at 0, giving us a cell on which f extends continuously to the
closure.
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T A(t) = (£, t/4+ £3/5)
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Definable v works

Let f(x,y) = min(1, y/x), and let v be any definable curve in the first
quadrant with left endpoint 0.

We can take a pair of definable curves whose derivatives at 0 are the same
as the curve's at 0, giving us a cell on which f extends continuously to the
closure.

T A(t) = (£, t/4+ £3/5)

1 y = .25x
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Definable v works

Let f(x,y) = min(1, y/x), and let v be any definable curve in the first
quadrant with left endpoint 0.

We can take a pair of definable curves whose derivatives at 0 are the same
as the curve's at 0, giving us a cell on which f extends continuously to the
closure.

What about the question for non-definable curves? Given a (non-
definable) curve, can we find a set on which the function is contin-
uous, which contains the curve, and on whose closure the function
extends continuously.
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Definable v works

Let f(x,y) = min(1, y/x), and let v be any definable curve in the first
quadrant with left endpoint 0.

We can take a pair of definable curves whose derivatives at 0 are the same
as the curve's at 0, giving us a cell on which f extends continuously to the
closure.

What about the question for non-definable curves? Given a (non-
definable) curve, can we find a set on which the function is contin-
uous, which contains the curve, and on whose closure the function
extends continuously.

There are easy examples of failure when ~ oscillates.
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Definition

Let v be a (not necessarily definable) curve. Say that  is non-oscillatory
if, for each definable function f from M™*1 to M, there exists tf > 0 such
that either f(t,~(t)) =0 for all t € (0, tr) or f(t,~v(t)) # O for all

t € (0, tr).
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Non-oscillatory Failure

@ Unfortunately, requiring that « be non-oscillatory is not enough to
make any bounded definable function continuous on ~'s closure.
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Non-oscillatory Failure

@ Unfortunately, requiring that « be non-oscillatory is not enough to
make any bounded definable function continuous on ~'s closure.

o Let M= (R,+,-,<,0,1). Let f(x,y) be min(1,y/x), and let
~v(t) = (t,—t/Int), so v is undefinable in M. Note, though, that
since ~ is definable in the o-minimal expansion of M, (R, +, -, <,exp),
v is certainly non-oscillatory.
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Non-oscillatory Failure

@ Unfortunately, requiring that « be non-oscillatory is not enough to
make any bounded definable function continuous on ~'s closure.

o Let M= (R,+,-,<,0,1). Let f(x,y) be min(1,y/x), and let
~v(t) = (t,—t/Int), so v is undefinable in M. Note, though, that
since ~ is definable in the o-minimal expansion of M, (R, +, -, <,exp),
v is certainly non-oscillatory.

o f(v(t)) =—1/Int, so lim,_qo+ f(y(t)) = 0.
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v Is Less Than Every Linear Function
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~ Cannot Be Squeezed

@ —1/Int goes to 0, but it is also greater than t?, for any d > 0, for
sufficiently small t. Thus, —t/Int is greater than t'* for every
d > 0, for sufficently small t.
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@ It is not hard to see that any definable set in (R, +,-,<,0,1) that
contains v must contain the curve (t, at), for some real positive a.
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~ Cannot Be Squeezed

@ —1/Int goes to 0, but it is also greater than t?, for any d > 0, for
sufficiently small t. Thus, —t/Int is greater than t'* for every
d > 0, for sufficently small t.

@ It is not hard to see that any definable set in (R, +,-,<,0,1) that
contains v must contain the curve (t, at), for some real positive a.

@ f cannot be continuously extended onto this set’s closure, because
along ~, its limit at the origin is 0, while along the linear curve, it is a.
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Why Did ~ Fail?

The failure of v can be seen as coming from the fact that we could not
squeeze v sufficiently. The gap between a linear function and a
higher-power function is too great. To more closely analyze this, we can
abstract out the “type” of ~.
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The Limit Type of a Curve

Lemma

Let v = (71,...,7k) be a non-oscillatory curve. Let ~(t) denote the
sequence (y1(t), ..., k(t)) € MK, for t € M. Then lim,_qo+ tp(y(t)/M)
exists, in the following sense: for each formula )(xi,...,xx) in M, there is
some s > 0 such that either 1)(y(t)) holds for all t € (0,s), or —1(v(t))
holds for all t € (0, s).
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Curve Limit Type Determines Definable Set Membership

Definition

With ~ as above, let tp(y/M) denote lim; o+ tp(y(t)/M). We can then
talk about the type of v; over v.;M.
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Curve Limit Type Determines Definable Set Membership

With ~ as above, let tp(y/M) denote lim; o+ tp(y(t)/M). We can then
talk about the type of v; over v.;M.

Lemma

Let ~y be a non-oscillatory curve. Then, for any definable C, there exists an
s > 0 such that v((0,s)) C C if and only if C € tp(y/M).

v
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Back to Bad v

We now return to v(t) = (t,—t/Int), and examine tp(7).
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We now return to v(t) = (t,—t/Int), and examine tp(7).
@ Forevery r >0€ Ry, x; < risin tp(y).
@ For every r € Ry, xo < rxq is in tp(7).
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Back to Bad v

We now return to v(t) = (t,—t/Int), and examine tp(7).
@ Forevery r >0€ Ry, x; < risin tp(y).
@ For every r € Ry, xo < rxq is in tp(7).

@ Forevery re R, g€ Qy, xo > rxﬁq is in tp(7).
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Failure of Continuity Extension for a Type

Since we have equivalence of definable set membership for curves and their
types, we can rephrase our failure with ~ as follows:
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Failure of Continuity Extension for a Type

Since we have equivalence of definable set membership for curves and their
types, we can rephrase our failure with ~ as follows:

Example

Take our model to be (R, +,-,<,0,1). Let p(x,y) be the type which says
that x is greater than 0 but less than every positive real, and that y is less
than rx, for any r € Ry, but greater than rx1ta. for any r e R, g € Q..
It is easy to see that these conditions generate a complete consistent type.
Let f be as before, min(1, y/x).

There is no definable set, C, such that C € p, f is continuous on C, and f
extends continuously to C.
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Failure of Continuity Extension for a Type

Since we have equivalence of definable set membership for curves and their
types, we can rephrase our failure with ~ as follows:

Example

Take our model to be (R, +,-,<,0,1). Let p(x,y) be the type which says
that x is greater than 0 but less than every positive real, and that y is less
than rx, for any r € Ry, but greater than rx1ta. for any r e R, g € Q..
It is easy to see that these conditions generate a complete consistent type.
Let f be as before, min(1, y/x).

There is no definable set, C, such that C € p, f is continuous on C, and f
extends continuously to C.

We must now develop a theory of o-minimal types.
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Basic dichotomy: cuts/noncuts

Lemma (Pillay-Steinhorn)

Let M be o-minimal, let A = acl(A) be a subset of M, and let p € S1(A).
Then the formulas in p of the form x > a, x < a, and x = a generate p.
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Basic dichotomy: cuts/noncuts

Lemma (Pillay-Steinhorn)

Let M be o-minimal, let A = acl(A) be a subset of M, and let p € S1(A).
Then the formulas in p of the form x > a, x < a, and x = a generate p.

Definition (Marker)

For A = acl(A), p € S51(A) is a cut iff it is non-algebraic and (1) there are
formulas of the form a < x and x < a in p, and (2) for every formula of
the form a < x in p, there is b > a such that b < x is in p, and similarly
for x < a. pis a noncut if it is non-algebraic and not a cut.
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Characterization of noncuts

@ Despite their negative definition, noncuts are actually quite simple to
describe. A noncut has one of the following four forms, for some
acA:
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Characterization of noncuts

@ Despite their negative definition, noncuts are actually quite simple to
describe. A noncut has one of the following four forms, for some
acA:

® » {x>alU{x<b|b>abeA}

» {x<alU{x>b|b<abeA}
» {x>b|be A}
» {x<b|be A}
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acA:

o » {x>alU{x<b|b>abeA}

» {x<alU{x>b|b<abeA}
» {x>b|be A}
» {x<b|be A}

@ The first two are called, respectively, the noncut to the right (left) of
a, while the last two are called, respectively, the noncut near positive
(negative) infinity.
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Characterization of noncuts

@ Despite their negative definition, noncuts are actually quite simple to
describe. A noncut has one of the following four forms, for some
acA:

o » {x>alU{x<b|b>abeA}

» {x<alU{x>b|b<abeA}
» {x>b|be A}
» {x<b|be A}

@ The first two are called, respectively, the noncut to the right (left) of
a, while the last two are called, respectively, the noncut near positive
(negative) infinity.

@ Noncuts are the definable 1-types, definable over the (at most
one)-element set containing just the “near” point.
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More preliminaries: scale

Definition

Let M < N, with every element of N\ M definable over M. Let

p € S1(N), with p a cut over N. Let ¢ be any realization of p. If there is
an N-definable k-ary function, f, such that f(Mk) is both cofinal in N
below ¢ and coinitial in N above ¢, we say that p is k-in scale on M.
Otherwise, if there is such an f with f(Mk) cofinal or coinitial, but not
both, we say that p is k-near scale on M. If no such f exists, we say that
p is out of scale on M.
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Let M < N, with every element of N\ M definable over M. Let

p € S1(N), with p a cut over N. Let ¢ be any realization of p. If there is
an N-definable k-ary function, f, such that f(l\/lk) is both cofinal in N
below ¢ and coinitial in N above ¢, we say that p is k-in scale on M.
Otherwise, if there is such an f with f(l\/lk) cofinal or coinitial, but not
both, we say that p is k-near scale on M. If no such f exists, we say that
p is out of scale on M.

In the above definitions, “k” can be replaced by “1”.
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More preliminaries: scale

Let M < N, with every element of N\ M definable over M. Let

p € S1(N), with p a cut over N. Let ¢ be any realization of p. If there is
an N-definable k-ary function, f, such that f(l\/lk) is both cofinal in N
below ¢ and coinitial in N above ¢, we say that p is k-in scale on M.
Otherwise, if there is such an f with f(l\/lk) cofinal or coinitial, but not
both, we say that p is k-near scale on M. If no such f exists, we say that
p is out of scale on M.

In the above definitions, “k” can be replaced by “1”.

In view of the lemma we will drop the k and just speak of “in scale,”
“near scale,” and “out of scale.”
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Definable n-types: Marker-Steinhorn

Theorem (Marker-Steinhorn)

Let p € S,(A). p is definable iff for some/any ¢ = (c1,...,¢cn) = p, and

fori=1,...,n, we have tp(c;j/Ac<;) a noncut, or near scale or out of
scale on A.
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Scale/definability examples

Let M = (R,+,-,0,1,<). Let N = M(e), where € is infinitesimal. For
compactness of notation, let P =R,.
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Scale/definability examples

Let M = (R,+,-,0,1,<). Let N = M(e), where € is infinitesimal. For
compactness of notation, let P =R,.

Q If c = p = tp(eY2/N), then

Pe? Peld Pel 42 Pe\[ Pel 41 P614 Pe
(e ) oo e R R e R e

p is out of scale on M, so tp(e, ¢) is definable.
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Scale/definability examples

Let M = (R,+,-,0,1,<). Let N = M(e), where € is infinitesimal. For
compactness of notation, let P =R,.

Q If c = p = tp(eY2/N), then

P2 Pl Pel42 PeV2 Pe”l Pe” Pe
e e S A S B S B

p is out of scale on M, so tp(e, ¢) is definable.

Q Let M= (Q +,-,0,1,<), and let N = M(e). If c = p = tp(me/N),
then p is in scale on M since, if f(x) = xe, f(M) is both cofinal and
coinitial at ¢ in N. Thus, tp(e, ¢) is in scale and not definable.
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More examples of scale

Q Let M(R,+,-,0,1,<) and let N = M(e). Let c be smaller than every
real, but larger than e, for any rational d > 0.

R
tp(c/N) is near scale on M since, if f(x) = x, f(M) is coinitial at ¢

in N. However, note that, if we take N = M(c), then € is a noncut
over V', so the scale issue does not arise. tp(e, ¢) is definable.
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More examples of scale

Q Let M(R,+,-,0,1,<) and let N = M(e). Let c be smaller than every
real, but larger than 9, for any rational d > 0.

0 ¢ c
tp(c/N) is near scale on M since, if f(x) = x, f(M) is coinitial at ¢
in N. However, note that, if we take N = M(c), then € is a noncut
over V', so the scale issue does not arise. tp(e, ¢) is definable.
Q Let M= (R,+,-,0,1,<) and N = M(e), and let ¢ be smaller than re
for r € Ry, but larger than €9 for g € Q~1.
Pe? P61;4 Pet: Pe

( ) Yool y--- o (e )
C

tp(c/N) is near scale on M since, if f(x) = xe, (M) is coinitial at ¢
in N. tp(e, c) is definable. And it is the type of our earlier
counterexample.
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Back to Question, and Leaping to Conclusions

If we look at our examples, we see that, in addition to (5), (2), with

(e, me), is easily seen to have the same failure with our question, with the
same function of min(y/x,1). So there are problems if a coordinate is near
scale or in scale over the previous ones.
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same function of min(y/x,1). So there are problems if a coordinate is near
scale or in scale over the previous ones.

So perhaps each coordinate of the type being out of scale over the
previous ones is the necessary criterion.
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Back to Question, and Leaping to Conclusions

If we look at our examples, we see that, in addition to (5), (2), with

(e, me), is easily seen to have the same failure with our question, with the
same function of min(y/x,1). So there are problems if a coordinate is near
scale or in scale over the previous ones.

So perhaps each coordinate of the type being out of scale over the
previous ones is the necessary criterion.

But (4) shows that we must be more careful — while (¢, ¢) has the second
coordinate near scale over the first, if we reverse the coordinates, (c,¢) is
just one infinitesimal followed by another, and it is not hard to show such
a type cannot yield a counterexample to our question.
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Back to Question, and Leaping to Conclusions

If we look at our examples, we see that, in addition to (5), (2), with

(e, me), is easily seen to have the same failure with our question, with the
same function of min(y/x,1). So there are problems if a coordinate is near
scale or in scale over the previous ones.

So perhaps each coordinate of the type being out of scale over the
previous ones is the necessary criterion.

But (4) shows that we must be more careful — while (¢, ¢) has the second
coordinate near scale over the first, if we reverse the coordinates, (c,¢) is
just one infinitesimal followed by another, and it is not hard to show such
a type cannot yield a counterexample to our question.

Since order matters as to the scale of a coordinate of a type over the
previous ones, our goal is to give a presentation of the type that will enable
us to examine whether one coordinate is out of scale over the previous
ones without having the rug pulled out from under us via a reordering.
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Decreasing Types: The Order

Definition

Let A be a set. Define a <4 b iff there exists a’ € dcl(aA) such that
a’ >0, and (0,a") Ndcl(bA) = ). Define a~a bif a £a band b 44 a.
Finally, let a Sabifa~abora=<ab.
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Decreasing Types: The Order

Definition

Let A be a set. Define a <4 b iff there exists a’ € dcl(aA) such that
a’ >0, and (0,a") Ndcl(bA) = ). Define a~a bif a £a band b 44 a.
Finally, let a Sabifa~abora=<ab.

This definition captures the idea that a is infinitesimal relative to b over A,
or at least that some element of dcl(Aa) is.
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Decreasing Types: The Order

Definition

Let A be a set. Define a <4 b iff there exists a’ € dcl(aA) such that
a’ >0, and (0,a") Ndcl(bA) = ). Define a~a bif a £a band b 44 a.
Finally, let a Sabifa~abora=<ab.

This definition captures the idea that a is infinitesimal relative to b over A,
or at least that some element of dcl(Aa) is.

~ IS an equivalence relation, and < totally orders the ~ 5-classes.
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Decreasing Types: Definition

Definition

Assume that we have a fixed sequence ¢ = (c¢;);e/. Then the <;-ordering

is the <._;-ordering. If we also have a fixed base set, A, then it will be the
< Ac_;-ordering.
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Decreasing Types: Definition

Definition

Assume that we have a fixed sequence ¢ = (c¢;);e/. Then the <;-ordering

is the <._;-ordering. If we also have a fixed base set, A, then it will be the
< Ac_;-ordering.

Definition

Let p(x1,...,%n) € Sn(A). p is decreasing if, for some (any) realization,
c={(c1,...,cn) of p, ¢ Zi ¢, for j > i.
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Decreasing Types: Definition

Definition

Assume that we have a fixed sequence ¢ = (c¢;);e/. Then the <;-ordering

is the <._;-ordering. If we also have a fixed base set, A, then it will be the
< Ac_;-ordering.

Definition

Let p(x1,...,%n) € Sn(A). p is decreasing if, for some (any) realization,
c={(c1,...,cn) of p, ¢ Zi ¢, for j > i.

Any n-type can have its coordinates reordered so that it is decreasing.
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Theorem

Let M be an o-minimal structure expanding a real closed field. Let
p € S,(M) be a decreasing type “near” the origin. Then the following two
conditions are equivalent:
Q Forc={c,...,cn), some (any) realization of p, tp(ci/c<iM) is a
noncut, or out of scale on M, fori =1,...,n.
© For every M-definable function, f, bounded on some M-definable set
in p, there is an M-definable set, C, in p, such that f is continuous
on C and extends continuously to cl(C).
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Sketch of Backward Proof

The backward direction is fairly straightforward. Suppose that we have
failure of the first condition. Then, at some coordinate, say the last one,
we have some Mc_ ,-definable function, g, such that g(M) is near scale or
in scale on M at c,.
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Sketch of Backward Proof

The backward direction is fairly straightforward. Suppose that we have
failure of the first condition. Then, at some coordinate, say the last one,
we have some Mc_ ,-definable function, g, such that g(M) is near scale or
in scale on M at c,,

Consider f = g~! as a function of c., and x. If C is any definable set
containing c, we can choose a # b € M such that g(a), g(b) € C._,, and
then, letting 1 and 7> be curves given by taking the pre-images of a and
b under f, we get that it is impossible for f to extend continuously to the
closure of C.
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Sketch of Sketch of Backward Proof

o (c1, )

Janak Ramakrishnan (U. Lyon I) Scale, decreasing types, closures April 15, 2009 25 /30



Sketch of Sketch of Backward Proof
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Sketch of Sketch of Backward Proof
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Sketch of Sketch of Backward Proof
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Sketch of Sketch of Backward Proof

f(x) = afor x € y1, f(x) = b for x € 5.
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Sketch of forward proof

For the forward direction, the proof works backwards along the coordinates
of p. The auxiliary induction assumption that we use is that, when a and
a’ are tuples that agree through the ith coordinate, |f(a) — f(a')] is
bounded by a function that goes to 0 as the last coordinate that was a
noncut goes to its limit.
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Sketch of forward proof

For the forward direction, the proof works backwards along the coordinates
of p. The auxiliary induction assumption that we use is that, when a and
a’ are tuples that agree through the ith coordinate, |f(a) — f(a')] is
bounded by a function that goes to 0 as the last coordinate that was a
noncut goes to its limit.

This ensures that, when the ith coordinate is a noncut, we can
continuously extend f to the closure point. To maintain the above
induction assumption, we can choose a definable curve in our set, and
further restrict our set so that f applied to the curve stays very “close” to
the limit value of f on the curve. Then, given two points that agree on
their first i — 1 coordinates, find a point on the curve that agrees with
them on their first i coordinates, and use a triangle inequality:
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More sketchiness
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More sketchiness

.a,

b/

X0 e a

[F(b) — f(xo)|, |F(b) — f(x0)|, [F(a) — F(b)|, |F(a") — F(b')] all small.
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t case

The noncut case is the one where any difficulties can lead to failure. The
cut case is where difficulties start — where we may fail at preserving the
induction assumption.
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The noncut case is the one where any difficulties can lead to failure. The
cut case is where difficulties start — where we may fail at preserving the
induction assumption.

We will have to ensure that two points, a and &', that agree up to their ith
coordinates, will give similar values when f is applied to them.
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The noncut case is the one where any difficulties can lead to failure. The
cut case is where difficulties start — where we may fail at preserving the
induction assumption.

We will have to ensure that two points, a and &', that agree up to their ith
coordinates, will give similar values when f is applied to them.

By doing the “opposite” of what was done in the proof of the backward

direction, we can restrict to an interval that does not have any points from
f=1(m).
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The noncut case is the one where any difficulties can lead to failure. The
cut case is where difficulties start — where we may fail at preserving the
induction assumption.

We will have to ensure that two points, a and &', that agree up to their ith
coordinates, will give similar values when f is applied to them.

By doing the “opposite” of what was done in the proof of the backward
direction, we can restrict to an interval that does not have any points from
f=H(M).

From that, one can prove that two points with ith coordinates in that
interval are “close enough” when f is applied to them, using results about
decreasing types.
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Picture of cut case
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Picture of cut case
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Picture of cut case
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Picture of cut case
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Picture of cut case
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Picture of cut case
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Picture of cut case
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tp(f(a)/M) = tp(f(a")/M).

We can then show that f(a) and f(a’) differ by a very small
amount, allowing us to satisfy our induction assumption.
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Conclusion

With the theorem, our original case of a curve is resolved, by taking the
curve's limit type.
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Conclusion

With the theorem, our original case of a curve is resolved, by taking the
curve's limit type.

While in this case, we were restricted from taking types that were
interdefinable with our original, in circumstances where one can (for
example, when examining definability), decreasing types allow for tighter
results, since all near scale and in scale types can be removed — even our
example of (5) disappears.
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