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Question

J. Truss asked whether any definable partial order in an o-minimal
structure could be definably extended to a linear order.

We will positively answer a generalization of this question, by
describing several classes of ordered structures that definably extend
their definable partial orders.

These structures can be thought of as possessing a “definable” order
extension principle – in these structures, the “order extension
principle” of ZFC holds definably. Formally:

Definition

Let M be a structure. Say that M has the order extension principle (has
OE) if, for any M-definable partial order (P,≺), there is an M-definable
linear order ≺′ that totally orders P and such that x ≺ y ⇒ x ≺′ y .
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Examples of structures with OE

In this talk, we will prove that the following structures have OE:

1 All well-ordered structures.

2 All (weakly) o-minimal structures (every definable 1-dimensional set is
a finite union of points and convex sets).

3 All (weakly-)quasi-o-minimal structures.

Prior to our work, the only results in this direction were when the
partial order was 1-dimensional (just a subset of M).

MacPherson and Steinhorn did the case when M was o-minimal.

Felgner and Truss did the case when M was well-ordered, essentially
by the same method as our proof.
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The key easy step

Our work hinges on an easy observation: that any family of sets
induces a partial order on its parameter set.

Let V = {V (x) : x ∈ A} be any family of sets, parameterized by A.

Definition

Let ≺V be the partial order on A given by the relation x ≺V y if and only
if V (x) ( V (y).

Definition

Let (P,≺) be a partial order. Let L(x) = {y ∈ P : y ≺ x} for x ∈ P – the
“lower cone” of x .

Let V = {L(x) : x ∈ P}. Then ≺V is a partial order on P.

If x ≺ y , then by transitivity and x ∈ L(y) \ L(x), we have x ≺V y , so
≺V is a partial order on P extending ≺.

Thus, if we can linearly extend the partial order ≺V for any definable
family V, we can linearly extend any partial order.
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Well-ordered structures

Theorem

Let M be a well-ordered structure. Then M has OE.

Let A be the parameter set for V = {V (x) : x ∈ A}, a definable
family of sets in Mn for some n ≥ 0. We first consider the case n = 1.

For x , y ∈ A, let B(x , y) = V (x)4V (y). Since M is well-ordered,
there is a least element of B(x , y). Then for x , y ∈ A, let x ≺ y if
t ∈ V (y) (so t /∈ V (x)).

If x and y are still unordered, then V (x) = V (y). Order x and y
lexicographically.
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Dimension n

For t ∈ M and any set X ⊆ Mn, let Xt = {y : 〈t, y〉 ∈ X}, the fiber
of X over t.

For higher dimensions, we use the fact that for any t ∈ M, we can
consider the family Vt = {V (x)t : x ∈ A}.
This induces a partial order ≺t on A.

The collection Vt is a family of (n − 1)-dimensional sets and so, by
induction, we may extend each ≺t to a linear order on A, uniformly in
t.

Instead of letting B(x , y) = V (x)4V (y), we set
B(x , y) = {t : V (x)t 6= V (y)t}. Then we let x ≺ y if x ≺t y for t
the least element of B(x , y).
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The general case

The previous proof gives the principle for subsequent proofs: if there is
some consistent way to pick out a particular part of B(x , y), for which
each ≺t gives the same answer about x and y , then we can use that
answer to order x and y .

Theorem (R., Steinhorn)

Let M be an ordered structure such that, for any definable A,C ⊆ M,
there is some initial segment of A either contained in or disjoint from C.
Then M has OE.
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Proof.

As before, we restrict to the 1-dimensional case for simplicity.

The proof proceeds as in the well-ordered case until we have
B(x , y) = V (x)4V (y).

Consider the definable set {t : t ∈ V (y) \ V (x)}. By hypothesis, this
set either contains or is disjoint from an initial segment of B(x , y).

If it contains an initial segment of B(x , y), then set x ≺ y .
Otherwise, let y ≺ x .

It is then routine to verify that this yields a nearly-total order, which
is completed lexicographically.
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If it contains an initial segment of B(x , y), then set x ≺ y .
Otherwise, let y ≺ x .

It is then routine to verify that this yields a nearly-total order, which
is completed lexicographically.
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Consequences of Theorem

Theorem

If M is an ordered structure such that for any definable A,C ⊆ M, C
contains or is disjoint from an initial segment of A, then M has OE.

The theorem immediately implies our results on well-ordered,
o-minimal, and weakly o-minimal structures.

Due to results of Onshuus, Steinhorn; R., any definable linear order in
an o-minimal structure (with EI) embeds definably in a lexicographic
order.

Thus any definable partial order in an o-minimal structure (with EI)
embeds in a reduct of a lexicographic order.

Note that while the hypothesis on M in the theorem is first-order, the
properties of being well-ordered or weakly o-minimal are not
first-order.

Thus, if some model of the theory of M is weakly o-minimal or
well-ordered, then M satisfies the requisite hypothesis.
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Extending the proof

As referred to before, if there is some consistent way to pick out a
particular part of B(x , y), for which each ≺t gives the same answer
about x and y , then we can use that answer to order x and y .

We thus describe a class of structures for which a more intricate
model-theoretic argument works.
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Confusing property

Definition

Say that an ω-saturated ordered structure M has (‡) if for any complete
type p ∈ S1(∅) and any definable sets A,C ⊆ M, the set p(M) ∩ A has an
initial segment either disjoint from or contained in C .

This is a natural generalization of the previous property we looked at.

Instead of looking at the whole structure when we intersect sets, we
restrict to a ∅-definable type.

This avoids problems caused by things like ∅-definable predicates.

J. Ramakrishnan (U. of Lisbon) Extending partial orders in tame ordered structures 5 June 2012 11 / 15



Confusing property

Definition

Say that an ω-saturated ordered structure M has (‡) if for any complete
type p ∈ S1(∅) and any definable sets A,C ⊆ M, the set p(M) ∩ A has an
initial segment either disjoint from or contained in C .

This is a natural generalization of the previous property we looked at.

Instead of looking at the whole structure when we intersect sets, we
restrict to a ∅-definable type.

This avoids problems caused by things like ∅-definable predicates.

J. Ramakrishnan (U. of Lisbon) Extending partial orders in tame ordered structures 5 June 2012 11 / 15



Confusing property

Definition

Say that an ω-saturated ordered structure M has (‡) if for any complete
type p ∈ S1(∅) and any definable sets A,C ⊆ M, the set p(M) ∩ A has an
initial segment either disjoint from or contained in C .

This is a natural generalization of the previous property we looked at.

Instead of looking at the whole structure when we intersect sets, we
restrict to a ∅-definable type.

This avoids problems caused by things like ∅-definable predicates.

J. Ramakrishnan (U. of Lisbon) Extending partial orders in tame ordered structures 5 June 2012 11 / 15



Confusing property

Definition

Say that an ω-saturated ordered structure M has (‡) if for any complete
type p ∈ S1(∅) and any definable sets A,C ⊆ M, the set p(M) ∩ A has an
initial segment either disjoint from or contained in C .

This is a natural generalization of the previous property we looked at.

Instead of looking at the whole structure when we intersect sets, we
restrict to a ∅-definable type.

This avoids problems caused by things like ∅-definable predicates.

J. Ramakrishnan (U. of Lisbon) Extending partial orders in tame ordered structures 5 June 2012 11 / 15



Lemma

If M has (‡), then, given A and C, we may actually replace the type p in
the statement of (‡) by some formula ϕ ∈ p. Thus some initial segment of
ϕ(M) ∩ A is contained in or disjoint from C . Moreover, ϕ is independent
of the parameters used to define A,C .

The lemma comes from a straightforward use of compactness, and allows
us to replace types by formulas.

Theorem (R., Steinhorn)

Let M be an ω-saturated ordered structure with (‡). Then M has OE.

The proof proceeds as before, but the definition of the order in terms of
B(x , y) is considerably more complicated, due to multiple applications of
compactness.
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Structures with and without (‡)

This theorem most directly deals with quasi-o-minimal structures:
ordered structures in which every definable set is (uniformly) a finite
Boolean combination of points, intervals, and ∅-definable sets.

We can also weaken “interval” to “convex set,” obtaining
weakly-quasi-o-minimal structures.

One might hope that (‡) held for all “reasonable” “tame” ordered
structures. However . . .

There is a dp-minimal (even VC-minimal) ordered structure that does
not have (‡).
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A dp-minimal ordered structure without (‡)

Let M = 〈Q×Q, <,E ,R〉, where
1 < orders Q×Q lexicographically;
2 R is an equivalence relation such that R(x , y) holds iff x and y lie in

the same copy of Q.
3 E is an equivalence relation refining each R-equivalence class into two

dense equivalence classes.

It is not hard to see that this structure has quantifier elimination and
is therefore dp-minimal (and even VC-minimal), and has only one
type over ∅.
But for any a, the set R(a,M) is neither contained in nor disjoint
from the set E (a,M), so M does not have ‡.
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Another kind of counterexample

While a wide variety of ordered structures have OE, there are ordered
structures without OE.

For instance, the Fräıssé limit of finite structures with an unrelated
partial order ≺ and linear order < is an ordered structure with a
definable partial order which cannot be definably extended to a linear
order.

Note, however, that this structure has the Independence Property.

Thus, the question remains whether there is a totally ordered NIP (or
dp-minimal, or VC-minimal) structure without OE.
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