Partial orders in tame ordered structures

Janak Ramakrishnan
(joint with C. Steinhorn)

CMAF, University of Lisbon
http://janak.org/talks/slalm.pdf

XV SLALM - Simposio Latinoamericano de Légica Matematica
5 June 2012

J. Ramakrishnan (U. of Lisbon) Partial orders in tame ordered structures 5 June 2012 1/15


http://janak.org/talks/slalm.pdf

@ J. Truss asked whether any definable partial order in an o-minimal
structure could be definably extended to a linear order.

We will positively answer a generalization of this question, by
describing several classes of ordered structures that definably extend
their definable partial orders.

These structures can be thought of as possessing a “definable” order
extension principle — in these structures, the “order extension
principle” of ZFC holds definably. Formally:

Let M be a structure. Say that M has the order extension principle (has
OE) if, for any M-definable partial order (P, <), there is an M-definable
linear order <’ that totally orders P and such that x < y = x <" y.
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Examples of structures with OE

A structure M has OE if it definably extends any partial order to a total one.

In this talk, we will prove that the following structures have OE:

All well-ordered structures.

All (weakly) o-minimal structures (every definable 1-dimensional set is
a finite union of points and convex sets).

All (weakly-)quasi-o-minimal structures.

Prior to our work, the only results in this direction were when the
partial order was 1-dimensional (just a subset of M).

MacPherson and Steinhorn did the case when M was o-minimal.

Felgner and Truss did the case when M was well-ordered, essentially
by the same method as our proof.
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The key easy step

@ Our work hinges on an easy observation: that any family of sets
induces a partial order on its parameter set.

Let V = {V(x) : x € A} be any family of sets, parameterized by A.

Let <y be the partial order on A given by the relation x <y y if and
only if V(x) € V(y).

Let (P, <) be a partial order. Let L(x) ={y € P:y < x} for x € P — the
“lower cone” of x.

Let V = {L(x) : x € P}. Then <y is a partial order on P.

Note that if x < y, then by transitivity and the fact that

x € L(y) \ L(x), we have x <y y, so <y is a partial order on P
extending <.

Thus, if we can linearly extend the partial order <y, for any definable
family V), we can linearly extend any partial order.
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Well-ordered structures
To show M has OE, we need to show that if A is the parameter set of a definable family
of sets V, then A can be linearly ordered, compatible with <.

Let M be a well-ordered structure. Then M has OE.

Let A be the parameter set for V = {V/(x) : x € A}, a definable

family of sets in M" for some n > 0. We consider the case n = 1.
The general case is similar.

For x,y € A, let B(x,y) = V(x)AV(y). Since M is well-ordered,
there is a least element of B(x,y). Then for x,y € A, let x < y if
te V(y) (sot ¢ V(x)).

If x and y are still unordered, then V(x) = V(y). Order x and y
lexicographically.
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Dimension n

@ Fort € M and any set X C M", let X; = {y : (t,y) € X}, the fiber
of X over t.
For higher dimensions, we use the fact that for any t € M, we can
consider the family V; = {V/(x): : x € A}
This induces a partial order <; on A.
The collection V; is a family of (n — 1)-dimensional sets and so, by
induction, we may extend each <; to a linear order on A, uniformly in
t.
Instead of letting B(x y) = V(x)AV(y), we set
B(x,y)={t: V(x)t # V(y)e}. Then welet x <y if x <¢y for t
the least element of B(x, y).
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The general case

The previous proof gives the principle for subsequent proofs: if there is
some consistent way to pick out a particular part of B(x,y), for which

each <; gives the same answer about x and y, then we can use that
answer to order x and y.

Let M be an ordered structure such that, for any definable A, C C M,

there is some initial segment of A either contained in or disjoint from C.
Then M has OE.
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Theorem: Any ordered structure with tame initial segment behavior of definable sets has
OE.

@ As before, we restrict to the 1-dimensional case for simplicity.

The proof proceeds as in the well-ordered case until we have

B(x,y) = V(x)AV(y).

Consider the definable set {t: t € V(y) \ V(x)}. By hypothesis, this
set either contains or is disjoint from an initial segment of B(x,y).

If it contains an initial segment of B(x, y), then set x < y.
Otherwise, let y < x.

It is then routine to verify that this yields a nearly-total order, which
is completed lexicographically.
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Consequences of Theorem

If M is an ordered structure such that for any definable A,C C M, C
contains or is disjoint from an initial segment of A, then M has OE.

The theorem immediately implies our results on well-ordered,
o-minimal, and weakly o-minimal structures.

Note that while the hypothesis on M in the theorem is first-order, the
properties of being well-ordered or weakly o-minimal are not
first-order.

Thus, if some model of the theory of M is weakly o-minimal or
well-ordered, then M satisfies the requisite hypothesis.
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Extending the proof

@ As referred to before, if there is some consistent way to pick out a
particular part of B(x,y), for which each < gives the same answer
about x and y, then we can use that answer to order x and y.

We thus describe a class of structures for which a more intricate
model-theoretic argument works.
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Confusing property

Recall that a structure is w-saturated if any type over finitely many
element is realized in the structure itself.

Say that an w-saturated ordered structure M has (1) if for any complete
type p € 51(0) and any definable sets A, C C M, the set p(M) N A has an
initial segment either disjoint from or contained in C.

This is a natural generalization of the previous property we looked at.

Instead of looking at the whole structure when we intersect sets, we
restrict to a ()-definable type.

This avoids problems caused by things like ()-definable predicates.
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(1): inside a type over the empty set, initial segments of definable sets are tame

If M has (f), then, given A and C, we may actually replace the type p in
the statement of (1) by some formula ¢ € p. Thus some initial segment of
©(M) N A is contained in or disjoint from C. Moreover, ¢ is independent
of the parameters used to define A, C.
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us to replace types by formulas.
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©(M) N A is contained in or disjoint from C. Moreover, ¢ is independent
of the parameters used to define A, C.

The lemma comes from a straightforward use of compactness, and allows
us to replace types by formulas.

Theorem (R., Steinhorn)
Let M be an w-saturated ordered structure with (f). Then M has OE.

The proof proceeds as before, but the definition of the order in terms of
B(x, y) will be considerably more complicated, due to multiple
applications of compactness.
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Let x,y € A. As before, we consider the one-dimensional case.

We want to look at V(y) \ V(x) on an “initial segment” of B(x,y).
However, the set V/(y) \ V(x) may not behave nicely on an initial
segment of B(x, y), so we must consider it on types near the lower
boundary of B(x, y).

Let C(x,y) be the upward closure of B(x, y).

Let P be the set of all types over () that have realizations coinitial in
Cx,y).

For each type p € P, there is some formula ¢, such that for t in an
initial segment of ¢,(M) N C(x,y), the statements t € V(x) and

t € V(y) have constant truth value.

There is some type p € P such that t € V(x)AV(y) for t coinitial in
p(M) N C(x,y).
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For this p, we know that on an initial segment of ¢,, we have

(without loss of generality) t € V(y) \ V(x).

@ Since there are such p and ¢, for every choice of x’, y’ such that
C(x',y") = C(x,y), there must be finitely many choices for ¢,,.

@ Applying compactness again, this time allowing x and y to vary so
that C(x,y) changes, we obtain finitely many formulas ¢1,...,om
such that for any x,y € A and each i < m, either:

@ On an initial segment of ¢;(M) N C(x,y) we have (say)
te V(y)\ V(x).

@ On an initial segment of ¢;(M) N C(x,y) we have
teV(x) < te V(y).

o Now we can set x < y if and only if on the first i < m such that (2)
fails, we have t € V(y) \ V(x) on an initial segment of
pi(M) N C(x,y).

@ Verification that this is a partial order extending the original is
routine, since in some sense it is a “lexicographic” order based on the
behavior on each ;.
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B(x,y) = V(x)AV(y); C(x,y) upward closure of B(x,y); ¢p formula with t € V(x)
and t € V(y) constant on initial segment; p type such that t € V/(x)AV/(y), for t
coinitial in p(M) N C(x, y)

@ For this p, we know that on an initial segment of ¢, we have
(without loss of generality) t € V(y) \ V(x).

e Since there are such p and ¢, for every choice of x’, y’ such that
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Consequences

@ This theorem most directly deals with quasi-o-minimal structures:
ordered structures in which every definable set is (uniformly) a finite
Boolean combination of points, intervals, and (-definable sets.

We can also weaken “interval” to “convex set,” obtaining
weakly-quasi-o-minimal structures.

There is a dp-minimal ordered structure that fails the hypothesis of
the theorem.

But | don’t know of any example of a totally ordered structure that
does not have OE.
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