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Question

J. Truss asked whether any definable partial order in an
o-minimal structure could be definably extended to a linear
order.

We will positively answer a generalization of this question, by
describing several classes of ordered structures that definably
extend their definable partial orders.

These structures can be thought of as possessing a
“definable” order extension principle – in these structures, the
“order extension principle” of ZFC holds definably. Formally:

Definition
Let M be a structure. Say that M has the order extension principle
(has OE) if, for any M-definable partial order (P,≺), there is an
M-definable linear order ≺′ that totally orders P and such that
x ≺ y ⇒ x ≺′ y .

Examples of structures with OE

In this talk, we will prove that the following structures have OE:

1 All well-ordered structures.

2 All (weakly) o-minimal structures (every definable
1-dimensional set is a finite union of points and convex sets).

3 All (weakly-)quasi-o-minimal structures.

Prior to our work, the only results in this direction were when
the partial order was 1-dimensional (just a subset of M).

MacPherson and Steinhorn did the case when M was
o-minimal.

Felgner and Truss did the case when M was well-ordered,
essentially by the same method as our proof.

The key easy step

Our work hinges on an easy observation: that any family of
sets induces a partial order on its parameter set.

Let V = {V (x) : x ∈ A} be any family of sets, parameterized
by A.

Let ≺V be the partial order on A given by the relation x ≺V y
if and only if V (x) ( V (y).

Definition
Let (P,≺) be a partial order. Let L(x) = {y ∈ P : y ≺ x} for
x ∈ P – the “lower cone” of x .

Let V = {L(x) : x ∈ P}. Then ≺V is a partial order on P.

Note that if x ≺ y , then by transitivity and the fact that
x ∈ L(y) \ L(x), we have x ≺V y , so ≺V is a partial order on
P extending ≺.

Thus, if we can linearly extend the partial order ≺V for any
definable family V, we can linearly extend any partial order.
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Well-ordered structures

Theorem
Let M be a well-ordered structure. Then M has OE.

Let A be the parameter set for V = {V (x) : x ∈ A}, a
definable family of sets in Mn for some n ≥ 0. We consider
the case n = 1. The general case is similar.

For x , y ∈ A, let B(x , y) = V (x)4V (y). Since M is
well-ordered, there is a least element of B(x , y). Then for
x , y ∈ A, let x ≺ y if t ∈ V (y) (so t /∈ V (x)).

If x and y are still unordered, then V (x) = V (y). Order x
and y lexicographically.

Dimension n

For t ∈ M and any set X ⊆ Mn, let Xt = {y : 〈t, y〉 ∈ X},
the fiber of X over t.

For higher dimensions, we use the fact that for any t ∈ M, we
can consider the family Vt = {V (x)t : x ∈ A}.
This induces a partial order ≺t on A.

The collection Vt is a family of (n − 1)-dimensional sets and
so, by induction, we may extend each ≺t to a linear order on
A, uniformly in t.

Instead of letting B(x , y) = V (x)4V (y), we set
B(x , y) = {t : V (x)t 6= V (y)t}. Then we let x ≺ y if x ≺t y
for t the least element of B(x , y).

The general case

The previous proof gives the principle for subsequent proofs: if
there is some consistent way to pick out a particular part of
B(x , y), for which each ≺t gives the same answer about x and y ,
then we can use that answer to order x and y .

Theorem (R., Steinhorn)

Let M be an ordered structure such that, for any definable
A,C ⊆ M, there is some initial segment of A either contained in or
disjoint from C. Then M has OE.

Proof.

As before, we restrict to the 1-dimensional case for simplicity.

The proof proceeds as in the well-ordered case until we have
B(x , y) = V (x)4V (y).

Consider the definable set {t : t ∈ V (y) \ V (x)}. By
hypothesis, this set either contains or is disjoint from an initial
segment of B(x , y).

If it contains an initial segment of B(x , y), then set x ≺ y .
Otherwise, let y ≺ x .

It is then routine to verify that this yields a nearly-total order,
which is completed lexicographically.



Consequences of Theorem

Theorem
If M is an ordered structure such that for any definable A,C ⊆ M,
C contains or is disjoint from an initial segment of A, then M has
OE.

The theorem immediately implies our results on well-ordered,
o-minimal, and weakly o-minimal structures.

Note that while the hypothesis on M in the theorem is
first-order, the properties of being well-ordered or weakly
o-minimal are not first-order.

Thus, if some model of the theory of M is weakly o-minimal
or well-ordered, then M satisfies the requisite hypothesis.

Extending the proof

As referred to before, if there is some consistent way to pick
out a particular part of B(x , y), for which each ≺t gives the
same answer about x and y , then we can use that answer to
order x and y .

We thus describe a class of structures for which a more
intricate model-theoretic argument works.

Confusing property

Recall that a structure is ω-saturated if any type over finitely many
element is realized in the structure itself.

Definition
Say that an ω-saturated ordered structure M has (‡) if for any
complete type p ∈ S1(∅) and any definable sets A,C ⊆ M, the set
p(M) ∩ A has an initial segment either disjoint from or contained
in C .

This is a natural generalization of the previous property we
looked at.

Instead of looking at the whole structure when we intersect
sets, we restrict to a ∅-definable type.

This avoids problems caused by things like ∅-definable
predicates.

Lemma
If M has (‡), then, given A and C , we may actually replace the
type p in the statement of (‡) by some formula ϕ ∈ p. Thus some
initial segment of ϕ(M) ∩ A is contained in or disjoint from C .
Moreover, ϕ is independent of the parameters used to define A,C .

The lemma comes from a straightforward use of compactness, and
allows us to replace types by formulas.

Theorem (R., Steinhorn)

Let M be an ω-saturated ordered structure with (‡). Then M has
OE.

The proof proceeds as before, but the definition of the order in
terms of B(x , y) will be considerably more complicated, due to
multiple applications of compactness.



Let x , y ∈ A. As before, we consider the one-dimensional case.

We want to look at V (y) \ V (x) on an “initial segment” of
B(x , y).

However, the set V (y) \ V (x) may not behave nicely on an
initial segment of B(x , y), so we must consider it on types
near the lower boundary of B(x , y).

Let C (x , y) be the upward closure of B(x , y).

Let P be the set of all types over ∅ that have realizations
coinitial in C (x , y).

For each type p ∈ P, there is some formula ϕp such that for t
in an initial segment of ϕp(M) ∩ C (x , y), the statements
t ∈ V (x) and t ∈ V (y) have constant truth value.

There is some type p ∈ P such that t ∈ V (x)4V (y) for t
coinitial in p(M) ∩ C (x , y).

For this p, we know that on an initial segment of ϕp, we have
(without loss of generality) t ∈ V (y) \ V (x).

Since there are such p and ϕp for every choice of x ′, y ′ such
that C (x ′, y ′) = C (x , y), there must be finitely many choices
for ϕp.

Applying compactness again, this time allowing x and y to
vary so that C (x , y) changes, we obtain finitely many
formulas ϕ1, . . . , ϕm such that for any x , y ∈ A and each
i ≤ m, either:

1 On an initial segment of ϕi (M) ∩ C (x , y) we have (say)
t ∈ V (y) \ V (x).

2 On an initial segment of ϕi (M) ∩ C (x , y) we have
t ∈ V (x) ⇐⇒ t ∈ V (y).

Now we can set x ≺ y if and only if on the first i ≤ m such
that (2) fails, we have t ∈ V (y) \ V (x) on an initial segment
of ϕi (M) ∩ C (x , y).

Verification that this is a partial order extending the original is
routine, since in some sense it is a “lexicographic” order based
on the behavior on each ϕi .

Consequences

This theorem most directly deals with quasi-o-minimal
structures: ordered structures in which every definable set is
(uniformly) a finite Boolean combination of points, intervals,
and ∅-definable sets.

We can also weaken “interval” to “convex set,” obtaining
weakly-quasi-o-minimal structures.

There is a dp-minimal ordered structure that fails the
hypothesis of the theorem.

But I don’t know of any example of a totally ordered structure
that does not have OE.


