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Introduction Example Proof Future work

Question

Let M be an o-minimal group. Let (P ,≺) be a M-definable total
linear order. What does P look like?

The simplest definable linear orders are the lexicographic ones on Mn.
We use <lex to denote the lexicographic order.
Obviously, a definable linear order can be a definable subset of such a
lexicographic order, or the image of such a subset under a definable
injection.

Theorem: That’s it.
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Answer

Theorem A

Let M be an o-minimal field, let (P ,≺) be an M-definable linear order

with n = dim(P). Then there is an injection, g : P → Mn+1, definable

over the same parameters as P, such that g is an embedding of (P ,≺) in
(Mn+1, <lex), and the projection of g(P) to the last coordinate is finite.

Remark

We actually only need M to eliminate imaginaries and possess a definable
order-reversing bijection from M to M. Then g maps P to M2n+1, with
finite projections to the odd coordinates.
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Prior Work

Steinhorn has unpublished work that implies Theorem A when
dim(P) = 1.

Steinhorn and Onshuus recently showed that a definable linear order
could be broken up into finitely many pieces, on each of which
Theorem A held.

However, their result did not say how the order compared elements in
different pieces, so the study of definable linear orders could not be
reduced to the study of definable subsets of lexicographic orders.

They also noted that such a result has applications in economics.
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One-dimensional interleaving

Example

Let P = (0, 1) ∪ (1, 2), with the order ≺ defined to agree with < on
(0, 1) × (0, 1) and (1, 2) × (1, 2), and defined as a ≺ b iff a ≤ b − 1 on
(0, 1) × (1, 2).

.25 ≺ .5 ≺ 1.5 ≺ .75 ≺ 1.8 ≺ 1.9

The embedding:

Send a ∈ (0, 1) to 〈a, 0〉. Send b ∈ (1, 2) to 〈b − 1, 1〉.
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Induction case

Induction: pdim

Definition

For x ∈ P , let pdim(x) := min{dim((y , z)≺) | x ∈ (y , z)≺}.

pdim(x) measures what the dimension of P is in a ≺-neighborhood of x .
For example, suppose that P = R

2 and ≺ is the lexicographic order.
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Induction case

An equivalence relation of closeness

Definition

For x , y ∈ P , let xEy if the ≺-interval bounded by x and y has dimension
< n.

E is a ≺-convex equivalence relation on P .

Lemma

No E-class has dimension n.

By compactness – if not, take two “extreme” elements of an E -class.
Then the ≺-interval they bound has dimension < n but the intervening set
has dimension n.
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Induction case

Induction or else

Lemma pdim

If the set {x ∈ P | pdim(x) = n} has dimension < n, then Theorem A

follows.

The premise implies that P/E has dimension < n.

By induction, P/E definably embeds in a lexicographic order. Also by
induction, for each x ∈ P/E , the class [x ]E definably embeds in a
lexicographic order.

With some careful stitching together while keeping track of
dimensions, the theorem is proved.
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Induction case

Or else

Lemma

n ≤ 1.

Let C be a cell with pdim = n on C , witnessed “from below”. We
also require that the order be “continuous” on C .

We follow a technique of Hasson and Onshuus, and pick a definable
curve Γ in C .

After restricting/redefining Γ, we may suppose that “<” and ≺ agree
on Γ, and that Γ has endpoints.
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Induction case

Fibers

Let T : P → Γ be the function defined by
T (x) := infΓ,≺{y ∈ Γ | y � x}.

By fiber arguments, the set T−1(y) has dimension < n for all but
finitely many y ∈ Γ, and we may restrict to some definable piece of Γ
where k = dim(T−1(y)) is constant.

Let b ≺ c be elements in this piece of Γ.

Looking again at fibers,

(b, c)≺ ⊆
⋃

x∈[b,c]≺∩Γ

T−1(x),

so n ≤ 1 + k .

We want to show that k = 0.

Janak Ramakrishnan (U. Lyon I) Definable linear orders 27 July 2010 10 / 15
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Induction case

Bringing in pdim

Suppose that k > 0. By hypothesis of continuity of ≺ on C , we can
choose d ∈ (b, c)≺ ∩ C \ Γ. Let a = T (d).

Note that (d , a)≺ ⊆ T−1(a) (or (a, d)≺ if d � a). Thus
dim((d , a)≺) ≤ dim(T−1(a)) ≤ k < n. But pdim(a) = n, so
dim((y , a)≺) < n for all y , contradiction.

Thus, k = 0, so dim(P) = n ≤ 1 + 0.
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Partial orders

Partial orders

We can ask if there exists a classification of definable partial orders,
like the one that we have given for total orders.

Clearly, this is much more difficult. For example, any family of
definable sets is a partial order, with the order relation of inclusion.

Nevertheless, we can ask:

Question

Let M be an o-minimal group, and let (P ,≺) be a definable partial order.

Does there exist a definable linear order ≺′ on P such that ≺′ extends ≺?

It holds for dimension 1.
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Beyond o-minimality

When can pdim be bad?

The proof showed that pdim is not n on an n-dimensional set for
n > 1.

Lemma pdim works in a much more general context than
o-minimality.

When is Lemma pdim true: for a definable linear order, if
dim({x | pdim(x) = n}) < n then the order decomposes into a
lexicographic product of lower-dimension orders?
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Beyond o-minimality

Structures with dimension

Our proof uses the following properties of dimension:
1 dim is a function from definable sets to N.
2 If E is a definable equivalence relation on a definable set X , and

dim(X ) = n, then at most finitely many E -classes of X have dimension
n.

3 If E is a definable equivalence relation on a definable set X and
dim(X ) = dim(X/E ), then there is a definable Y ⊆ X with
dim(Y ) = dim(X ) and for y ∈ Y the set [y ]E is finite.

4 Dimension is uniformly definable – for any parametrically-definable set
X (y) and any natural number k , there is a formula θk(y) such that
dim(X (y)) ≥ k iff θk(y).

Property (2) was first defined by Poizat and Pillay as a property of
“chirurgical” structures.

All of these properties hold for pregeometric surgical structures, as
defined by Gagelman.

Janak Ramakrishnan (U. Lyon I) Definable linear orders 27 July 2010 14 / 15
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Strange linear orders

Unfortunately, the second lemma’s proof breaks down in this context.

In part, this is because the 1-dimensional set that we chose, Γ, may
not be definably complete, and so the definition of T fails.

Nevertheless, we may hope that it is true. Namely:

Question

Let P be a definable linear order in a pregeometric surgical structure.

Does the set {x ∈ P | pdim(x) = n} always have dimension < n?
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