Definable linear orders in o-minimal structures

Janak Ramakrishnan

Université Claude Bernard Lyon I Institut Camille Jordan

27 July 2010

Logic Colloquium 2010, Paris http://www.janak.org/talks/paris-lc.pdf

Introduction 0●00	Proof 000000	Future work 0000
Question		

- Let *M* be an o-minimal group. Let (*P*, ≺) be a *M*-definable total linear order. What does *P* look like?
- The simplest definable linear orders are the lexicographic ones on Mⁿ. We use <_{lex} to denote the lexicographic order. Obviously, a definable linear order can be a definable subset of such a lexicographic order, or the image of such a subset under a definable injection.
- Theorem: That's it.

Introduction 0●00	Proof 000000	Future work 0000

- Let *M* be an o-minimal group. Let (*P*, ≺) be a *M*-definable total linear order. What does *P* look like?
- The simplest definable linear orders are the lexicographic ones on Mⁿ. We use <_{lex} to denote the lexicographic order. Obviously, a definable linear order can be a definable subset of such a lexicographic order, or the image of such a subset under a definable injection.
- Theorem: That's it.

Introduction 0●00	Proof 000000	Future work 0000

- Let *M* be an o-minimal group. Let (*P*, ≺) be a *M*-definable total linear order. What does *P* look like?
- The simplest definable linear orders are the lexicographic ones on Mⁿ. We use <_{lex} to denote the lexicographic order. Obviously, a definable linear order can be a definable subset of such a lexicographic order, or the image of such a subset under a definable injection.
- Theorem: That's it.

Introduction	Example	Proof	Future work
0000			

Answer

Theorem A

Let M be an o-minimal field, let (P, \prec) be an M-definable linear order with $n = \dim(P)$. Then there is an injection, $g : P \to M^{n+1}$, definable over the same parameters as P, such that g is an embedding of (P, \prec) in $(M^{n+1}, <_{lex})$, and the projection of g(P) to the last coordinate is finite.

Remark

We actually only need M to eliminate imaginaries and possess a definable order-reversing bijection from M to M. Then g maps P to M^{2n+1} , with finite projections to the odd coordinates.

Introduction	Example	Proof	Future work
0000			

Answer

Theorem A

Let M be an o-minimal field, let (P, \prec) be an M-definable linear order with $n = \dim(P)$. Then there is an injection, $g : P \to M^{n+1}$, definable over the same parameters as P, such that g is an embedding of (P, \prec) in $(M^{n+1}, <_{lex})$, and the projection of g(P) to the last coordinate is finite.

Remark

We actually only need M to eliminate imaginaries and possess a definable order-reversing bijection from M to M. Then g maps P to M^{2n+1} , with finite projections to the odd coordinates.

Introduction	Proof	Future work
0000	000000	0000

- Steinhorn has unpublished work that implies Theorem A when dim(P) = 1.
- Steinhorn and Onshuus recently showed that a definable linear order could be broken up into finitely many pieces, on each of which Theorem A held.
- However, their result did not say how the order compared elements in different pieces, so the study of definable linear orders could not be reduced to the study of definable subsets of lexicographic orders.
- They also noted that such a result has applications in economics.

Introduction	Proof	Future work
0000	000000	0000

- Steinhorn has unpublished work that implies Theorem A when dim(P) = 1.
- Steinhorn and Onshuus recently showed that a definable linear order could be broken up into finitely many pieces, on each of which Theorem A held.
- However, their result did not say how the order compared elements in different pieces, so the study of definable linear orders could not be reduced to the study of definable subsets of lexicographic orders.
- They also noted that such a result has applications in economics.

Introduction	Proof	Future work
0000	000000	0000

- Steinhorn has unpublished work that implies Theorem A when dim(P) = 1.
- Steinhorn and Onshuus recently showed that a definable linear order could be broken up into finitely many pieces, on each of which Theorem A held.
- However, their result did not say how the order compared elements in different pieces, so the study of definable linear orders could not be reduced to the study of definable subsets of lexicographic orders.
- They also noted that such a result has applications in economics.

Introduction	Proof	Future work
0000	000000	0000

- Steinhorn has unpublished work that implies Theorem A when dim(P) = 1.
- Steinhorn and Onshuus recently showed that a definable linear order could be broken up into finitely many pieces, on each of which Theorem A held.
- However, their result did not say how the order compared elements in different pieces, so the study of definable linear orders could not be reduced to the study of definable subsets of lexicographic orders.
- They also noted that such a result has applications in economics.

 Introduction
 Example
 Proof
 Future work

 0000
 •
 000000
 0000

One-dimensional interleaving

Example

Let $P = (0,1) \cup (1,2)$, with the order \prec defined to agree with < on $(0,1) \times (0,1)$ and $(1,2) \times (1,2)$, and defined as $a \prec b$ iff $a \leq b-1$ on $(0,1) \times (1,2)$.

$.25 \prec .5 \prec 1.5 \prec .75 \prec 1.8 \prec 1.9$

The embedding:

Send $a \in (0,1)$ to $\langle a, 0 \rangle$. Send $b \in (1,2)$ to $\langle b-1, 1 \rangle$.

 Introduction
 Example
 Proof
 Future work

 0000
 •
 000000
 0000

One-dimensional interleaving

Example

Let $P = (0,1) \cup (1,2)$, with the order \prec defined to agree with < on $(0,1) \times (0,1)$ and $(1,2) \times (1,2)$, and defined as $a \prec b$ iff $a \leq b-1$ on $(0,1) \times (1,2)$.

$.25 \prec .5 \prec 1.5 \prec .75 \prec 1.8 \prec 1.9$

The embedding:

Send $a \in (0,1)$ to $\langle a, 0 \rangle$. Send $b \in (1,2)$ to $\langle b-1, 1 \rangle$.

Introduction	Proof	Future work
0000	●00000	0000
Induction case		

Definition

For $x \in P$, let $pdim(x) := min\{dim((y, z)_{\prec}) \mid x \in (y, z)_{\prec}\}.$

Introduction	Proof	Future work
0000	●00000	0000
Induction case		

Definition

For $x \in P$, let $pdim(x) := min\{dim((y, z)_{\prec}) \mid x \in (y, z)_{\prec}\}.$

Introduction	Proof	Future work
0000	●00000	0000
Induction case		

Definition

For $x \in P$, let $pdim(x) := min\{dim((y,z)_{\prec}) \mid x \in (y,z)_{\prec}\}.$

Introduction	Proof	Future work
0000	●00000	0000
Induction case		

Definition

For $x \in P$, let $pdim(x) := min\{dim((y,z)_{\prec}) \mid x \in (y,z)_{\prec}\}.$

$$\dim((y,z)_{\prec})=2$$

Introduction	Proof	Future work
0000	●00000	0000
Induction case		

Definition

For $x \in P$, let $pdim(x) := min\{dim((y,z)_{\prec}) \mid x \in (y,z)_{\prec}\}.$

Introduction	Proof	Future work
0000	●00000	0000
Induction case		

Definition

For $x \in P$, let $pdim(x) := min\{dim((y,z)_{\prec}) \mid x \in (y,z)_{\prec}\}.$

$$dim((y', z')_{\prec}) = 1$$

Introduction	Proof	Future work
0000	o●oooo	0000
Induction case		

Definition

For $x, y \in P$, let xEy if the \prec -interval bounded by x and y has dimension < n.

E is a \prec -convex equivalence relation on *P*.

Lemma

No E-class has dimension n.

Introduction 0000	Proof o●oooo	Future work 0000	
Induction case			

Definition

For $x, y \in P$, let xEy if the \prec -interval bounded by x and y has dimension < n.

E is a \prec -convex equivalence relation on *P*.

Lemma

No E-class has dimension n.

Introduction	Proof	Future work
0000	o●oooo	0000
Induction case		

Definition

For $x, y \in P$, let xEy if the \prec -interval bounded by x and y has dimension < n.

E is a \prec -convex equivalence relation on *P*.

Lemma

No E-class has dimension n.

Introduction	Proof	Future work
0000	o●oooo	0000
Induction case		

Definition

For $x, y \in P$, let xEy if the \prec -interval bounded by x and y has dimension < n.

E is a \prec -convex equivalence relation on *P*.

Lemma

No E-class has dimension n.

Introduction	Proof	Future work
0000	oo●ooo	0000
Induction case		

Lemma pdim

If the set $\{x \in P \mid pdim(x) = n\}$ has dimension < n, then Theorem A follows.

• The premise implies that P/E has dimension < n.

By induction, P/E definably embeds in a lexicographic order. Also by induction, for each x ∈ P/E, the class [x]_E definably embeds in a lexicographic order.

• With some careful stitching together while keeping track of dimensions, the theorem is proved.

Introduction	Proof	Future work
0000	oo●ooo	0000
Induction case		

Lemma pdim

If the set $\{x \in P \mid pdim(x) = n\}$ has dimension < n, then Theorem A follows.

• The premise implies that P/E has dimension < n.

By induction, P/E definably embeds in a lexicographic order. Also by induction, for each x ∈ P/E, the class [x]_E definably embeds in a lexicographic order.

• With some careful stitching together while keeping track of dimensions, the theorem is proved.

Introduction	Proof	Future work
0000	oo●ooo	0000
Induction case		

Lemma pdim

If the set $\{x \in P \mid pdim(x) = n\}$ has dimension < n, then Theorem A follows.

- The premise implies that P/E has dimension < n.
- By induction, P/E definably embeds in a lexicographic order. Also by induction, for each x ∈ P/E, the class [x]_E definably embeds in a lexicographic order.
- With some careful stitching together while keeping track of dimensions, the theorem is proved.

Introduction	Proof	Future work
0000	oo●ooo	0000
Induction case		

Lemma pdim

If the set $\{x \in P \mid pdim(x) = n\}$ has dimension < n, then Theorem A follows.

- The premise implies that P/E has dimension < n.
- By induction, P/E definably embeds in a lexicographic order. Also by induction, for each x ∈ P/E, the class [x]_E definably embeds in a lexicographic order.
- With some careful stitching together while keeping track of dimensions, the theorem is proved.

Introduction	Proof	Future work
Induction case		

Lemma	
$n \leq 1$.	

- Let *C* be a cell with pdim = *n* on *C*, witnessed "from below". We also require that the order be "continuous" on *C*.
- We follow a technique of Hasson and Onshuus, and pick a definable curve Γ in *C*.
- After restricting/redefining Γ, we may suppose that "<" and ≺ agree on Γ, and that Γ has endpoints.

Introduction 0000	Proof 000●00	Future work 0000
Induction case		

Lemma	
$n \leq 1.$	

- Let *C* be a cell with pdim = *n* on *C*, witnessed "from below". We also require that the order be "continuous" on *C*.
- We follow a technique of Hasson and Onshuus, and pick a definable curve Γ in *C*.
- After restricting/redefining Γ, we may suppose that "<" and ≺ agree on Γ, and that Γ has endpoints.

Introduction 0000	Proof 000●00	Future work 0000
Induction case		

Lemma	
$n \leq 1.$	

- Let *C* be a cell with pdim = *n* on *C*, witnessed "from below". We also require that the order be "continuous" on *C*.
- We follow a technique of Hasson and Onshuus, and pick a definable curve Γ in *C*.
- After restricting/redefining Γ, we may suppose that "<" and ≺ agree on Γ, and that Γ has endpoints.

Introduction 0000	Proof 000●00	Future work 0000
Induction case		

Lemma	
$n \leq 1.$	

- Let *C* be a cell with pdim = *n* on *C*, witnessed "from below". We also require that the order be "continuous" on *C*.
- We follow a technique of Hasson and Onshuus, and pick a definable curve Γ in C.
- After restricting/redefining $\Gamma,$ we may suppose that "<" and \prec agree on $\Gamma,$ and that Γ has endpoints.

Introduction 0000	Proof oooo●o	Future work 0000
Induction case		

Fibers

• Let $T : P \to \Gamma$ be the function defined by $T(x) := \inf_{\Gamma, \prec} \{ y \in \Gamma \mid y \succeq x \}.$

- By fiber arguments, the set T⁻¹(y) has dimension < n for all but finitely many y ∈ Γ, and we may restrict to some definable piece of Γ where k = dim(T⁻¹(y)) is constant.
- Let $b \prec c$ be elements in this piece of Γ .
- Looking again at fibers,

$$(b,c)_{\prec} \subseteq \bigcup_{x \in [b,c]_{\prec} \cap \Gamma} T^{-1}(x),$$

so n ≤ 1 + k.
We want to show that k = 0.

Introduction 0000	Proof oooo●o	Future work 0000	
Induction case			
F 11			
Fiberc			

- Let $T : P \to \Gamma$ be the function defined by $T(x) := \inf_{\Gamma, \prec} \{ y \in \Gamma \mid y \succeq x \}.$
- By fiber arguments, the set T⁻¹(y) has dimension < n for all but finitely many y ∈ Γ, and we may restrict to some definable piece of Γ where k = dim(T⁻¹(y)) is constant.
- Let $b \prec c$ be elements in this piece of Γ .
- Looking again at fibers,

$$(b,c)_{\prec} \subseteq \bigcup_{x \in [b,c]_{\prec} \cap \Gamma} T^{-1}(x),$$

- so $n \leq 1 + k$.
- We want to show that k = 0.

Introduction 0000	Proof oooo●o	Future work 0000	
Induction case			
E 11			
Liborc			

- Let $T : P \to \Gamma$ be the function defined by $T(x) := \inf_{\Gamma, \prec} \{ y \in \Gamma \mid y \succeq x \}.$
- By fiber arguments, the set T⁻¹(y) has dimension < n for all but finitely many y ∈ Γ, and we may restrict to some definable piece of Γ where k = dim(T⁻¹(y)) is constant.
- Let $b \prec c$ be elements in this piece of Γ .

Looking again at fibers,

$$(b,c)_{\prec} \subseteq \bigcup_{x \in [b,c]_{\prec} \cap \Gamma} T^{-1}(x),$$

so $n \leq 1+k$.

• We want to show that k = 0.

Introduction 0000	Proof 0000●0	Future work 0000	
Induction case			
Fibers			

- Let $T : P \to \Gamma$ be the function defined by $T(x) := \inf_{\Gamma, \prec} \{ y \in \Gamma \mid y \succeq x \}.$
- By fiber arguments, the set T⁻¹(y) has dimension < n for all but finitely many y ∈ Γ, and we may restrict to some definable piece of Γ where k = dim(T⁻¹(y)) is constant.
- Let $b \prec c$ be elements in this piece of Γ .
- Looking again at fibers,

$$(b,c)_{\prec} \subseteq \bigcup_{x \in [b,c]_{\prec} \cap \Gamma} \mathcal{T}^{-1}(x),$$

so $n \leq 1 + k$.

• We want to show that k = 0.

Introduction 0000	Proof 0000●0	Future work 0000	
Induction case			
Fibers			

- Let $T : P \to \Gamma$ be the function defined by $T(x) := \inf_{\Gamma, \prec} \{ y \in \Gamma \mid y \succeq x \}.$
- By fiber arguments, the set T⁻¹(y) has dimension < n for all but finitely many y ∈ Γ, and we may restrict to some definable piece of Γ where k = dim(T⁻¹(y)) is constant.
- Let $b \prec c$ be elements in this piece of Γ .
- Looking again at fibers,

$$(b,c)_{\prec} \subseteq \bigcup_{x \in [b,c]_{\prec} \cap \Gamma} T^{-1}(x),$$

so $n \leq 1+k$.

• We want to show that k = 0.

Introduction	Proof	Future work
0000	00000●	0000
Induction case		

Bringing in pdim

- Suppose that k > 0. By hypothesis of continuity of ≺ on C, we can choose d ∈ (b, c) ≺ ∩ C \ Γ. Let a = T(d).
- Note that (d, a) ⊂ T⁻¹(a) (or (a, d) ← if d ≻ a). Thus dim((d, a) ←) ≤ dim(T⁻¹(a)) ≤ k < n. But pdim(a) = n, so dim((y, a) ←) < n for all y, contradiction.
- Thus, k = 0, so dim $(P) = n \le 1 + 0$.

Introduction	Proof	Future work
0000	00000●	0000
Induction case		

Bringing in pdim

- Suppose that k > 0. By hypothesis of continuity of ≺ on C, we can choose d ∈ (b, c) ≺ ∩ C \ Γ. Let a = T(d).
- Note that (d, a) ⊂ T⁻¹(a) (or (a, d) ← if d ≻ a). Thus dim((d, a) ←) ≤ dim(T⁻¹(a)) ≤ k < n. But pdim(a) = n, so dim((y, a) ←) < n for all y, contradiction.
- Thus, k = 0, so dim $(P) = n \le 1 + 0$.

Introduction	Proof	Future work
0000	00000●	0000
Induction case		

Bringing in pdim

- Suppose that k > 0. By hypothesis of continuity of ≺ on C, we can choose d ∈ (b, c) ≺ ∩ C \ Γ. Let a = T(d).
- Note that (d, a) ⊂ T⁻¹(a) (or (a, d) ← if d ≻ a). Thus dim((d, a) ←) ≤ dim(T⁻¹(a)) ≤ k < n. But pdim(a) = n, so dim((y, a) ←) < n for all y, contradiction.
- Thus, k = 0, so dim $(P) = n \le 1 + 0$.

Introduction 0000	Proof 000000	Future work ●○○○
Partial orders		

Partial orders

- We can ask if there exists a classification of definable partial orders, like the one that we have given for total orders.
- Clearly, this is much more difficult. For example, any family of definable sets is a partial order, with the order relation of inclusion.
- Nevertheless, we can ask:

Question

Let M be an o-minimal group, and let (P, \prec) be a definable partial order. Does there exist a definable linear order \prec' on P such that \prec' extends \prec ?

Introduction 0000	Proof 000000	Future work ●○○○	
Partial orders			
Dartial orders			

- We can ask if there exists a classification of definable partial orders, like the one that we have given for total orders.
- Clearly, this is much more difficult. For example, any family of definable sets is a partial order, with the order relation of inclusion.
- Nevertheless, we can ask:

Let M be an o-minimal group, and let (P, \prec) be a definable partial order. Does there exist a definable linear order \prec' on P such that \prec' extends \prec ?

Introduction 0000	Proof 000000	Future work ●○○○
Partial orders		
Deutiel endeue		

- We can ask if there exists a classification of definable partial orders, like the one that we have given for total orders.
- Clearly, this is much more difficult. For example, any family of definable sets is a partial order, with the order relation of inclusion.
- Nevertheless, we can ask:

Let M be an o-minimal group, and let (P, \prec) be a definable partial order. Does there exist a definable linear order \prec' on P such that \prec' extends \prec ?

Introduction 0000		Proof 000000	Future work ●○○○	
Partial orders				
D. J. L. L.				
Dartial orders	•			

- We can ask if there exists a classification of definable partial orders, like the one that we have given for total orders.
- Clearly, this is much more difficult. For example, any family of definable sets is a partial order, with the order relation of inclusion.
- Nevertheless, we can ask:

Let M be an o-minimal group, and let (P, \prec) be a definable partial order. Does there exist a definable linear order \prec' on P such that \prec' extends \prec ?

Introduction	Proof	Future work
0000	000000	○●○○
Beyond o-minimality		

When can pdim be bad?

- The proof showed that pdim is not *n* on an *n*-dimensional set for n > 1.
- Lemma pdim works in a much more general context than o-minimality.
- When is Lemma pdim true: for a definable linear order, if dim({x | pdim(x) = n}) < n then the order decomposes into a lexicographic product of lower-dimension orders?

Introduction	Proof	Future work
0000	000000	○●○○
Beyond o-minimality		

When can pdim be bad?

- The proof showed that pdim is not *n* on an *n*-dimensional set for n > 1.
- Lemma pdim works in a much more general context than o-minimality.
- When is Lemma pdim true: for a definable linear order, if dim({x | pdim(x) = n}) < n then the order decomposes into a lexicographic product of lower-dimension orders?

Introduction 0000	Proof 000000	Future work
Beyond o-minimality		

When can pdim be bad?

- The proof showed that pdim is not *n* on an *n*-dimensional set for n > 1.
- Lemma pdim works in a much more general context than o-minimality.
- When is Lemma pdim true: for a definable linear order, if dim({x | pdim(x) = n}) < n then the order decomposes into a lexicographic product of lower-dimension orders?

Introduction	Proof	Future work
0000	000000	○0●0
Beyond o-minimality		

• Our proof uses the following properties of dimension:

-] dim is a function from definable sets to \mathbb{N} .
- If E is a definable equivalence relation on a definable set X, and dim(X) = n, then at most finitely many E-classes of X have dimension n.
- If E is a definable equivalence relation on a definable set X and dim(X) = dim(X/E), then there is a definable Y ⊆ X with dim(Y) = dim(X) and for y ∈ Y the set [y]_E is finite.
- O Dimension is uniformly definable for any parametrically-definable set X(y) and any natural number k, there is a formula θ^k(y) such that dim(X(y)) ≥ k iff θ^k(y).
- Property (2) was first defined by Poizat and Pillay as a property of "chirurgical" structures.
- All of these properties hold for pregeometric surgical structures, as defined by Gagelman.

Introduction	Proof	Future work
0000	000000	○0●0
Beyond o-minimality		

• Our proof uses the following properties of dimension:

0 dim is a function from definable sets to \mathbb{N} .

- If E is a definable equivalence relation on a definable set X, and dim(X) = n, then at most finitely many E-classes of X have dimension n.
- If E is a definable equivalence relation on a definable set X and dim(X) = dim(X/E), then there is a definable Y ⊆ X with dim(Y) = dim(X) and for y ∈ Y the set [y]_E is finite.
- O Dimension is uniformly definable for any parametrically-definable set X(y) and any natural number k, there is a formula $\theta^k(y)$ such that $\dim(X(y)) \ge k$ iff $\theta^k(y)$.
- Property (2) was first defined by Poizat and Pillay as a property of "chirurgical" structures.
- All of these properties hold for pregeometric surgical structures, as defined by Gagelman.

Introduction	Proof	Future work
0000	000000	○○●○
Beyond o-minimality		

- Our proof uses the following properties of dimension:
 - 0 dim is a function from definable sets to \mathbb{N} .
 - If E is a definable equivalence relation on a definable set X, and dim(X) = n, then at most finitely many E-classes of X have dimension n.
 - If E is a definable equivalence relation on a definable set X and dim(X) = dim(X/E), then there is a definable Y ⊆ X with dim(Y) = dim(X) and for y ∈ Y the set [y]_E is finite.
 - O Dimension is uniformly definable for any parametrically-definable set X(y) and any natural number k, there is a formula θ^k(y) such that dim(X(y)) ≥ k iff θ^k(y).
- Property (2) was first defined by Poizat and Pillay as a property of "chirurgical" structures.
- All of these properties hold for pregeometric surgical structures, as defined by Gagelman.

	Example	Proof	Future work
			0000
Beyond o-minimality			

- Our proof uses the following properties of dimension:
 - 0 dim is a function from definable sets to \mathbb{N} .
 - If E is a definable equivalence relation on a definable set X, and dim(X) = n, then at most finitely many E-classes of X have dimension n.
 - If E is a definable equivalence relation on a definable set X and dim(X) = dim(X/E), then there is a definable Y ⊆ X with dim(Y) = dim(X) and for y ∈ Y the set [y]_E is finite.
 - Dimension is uniformly definable for any parametrically-definable set X(y) and any natural number k, there is a formula $\theta^k(y)$ such that $\dim(X(y)) \ge k$ iff $\theta^k(y)$.
- Property (2) was first defined by Poizat and Pillay as a property of "chirurgical" structures.
- All of these properties hold for pregeometric surgical structures, as defined by Gagelman.

	Example	Proof	Future work
			0000
Beyond o-minimality			

- Our proof uses the following properties of dimension:
 - 0 dim is a function from definable sets to \mathbb{N} .
 - If E is a definable equivalence relation on a definable set X, and dim(X) = n, then at most finitely many E-classes of X have dimension n.
 - If E is a definable equivalence relation on a definable set X and dim(X) = dim(X/E), then there is a definable Y ⊆ X with dim(Y) = dim(X) and for y ∈ Y the set [y]_E is finite.
 - Oimension is uniformly definable for any parametrically-definable set X(y) and any natural number k, there is a formula θ^k(y) such that dim(X(y)) ≥ k iff θ^k(y).
- Property (2) was first defined by Poizat and Pillay as a property of "chirurgical" structures.
- All of these properties hold for pregeometric surgical structures, as defined by Gagelman.

	Example	Proof	Future work
			0000
Beyond o-minimality			

- Our proof uses the following properties of dimension:
 - 0 dim is a function from definable sets to \mathbb{N} .
 - If E is a definable equivalence relation on a definable set X, and dim(X) = n, then at most finitely many E-classes of X have dimension n.
 - If E is a definable equivalence relation on a definable set X and dim(X) = dim(X/E), then there is a definable Y ⊆ X with dim(Y) = dim(X) and for y ∈ Y the set [y]_E is finite.
 - O Dimension is uniformly definable for any parametrically-definable set X(y) and any natural number k, there is a formula θ^k(y) such that dim(X(y)) ≥ k iff θ^k(y).
- Property (2) was first defined by Poizat and Pillay as a property of "chirurgical" structures.
- All of these properties hold for pregeometric surgical structures, as defined by Gagelman.

	Example	Proof	Future work
			0000
Beyond o-minimality			

- Our proof uses the following properties of dimension:
 - 0 dim is a function from definable sets to \mathbb{N} .
 - If E is a definable equivalence relation on a definable set X, and dim(X) = n, then at most finitely many E-classes of X have dimension n.
 - If E is a definable equivalence relation on a definable set X and dim(X) = dim(X/E), then there is a definable Y ⊆ X with dim(Y) = dim(X) and for y ∈ Y the set [y]_E is finite.
 - Obimension is uniformly definable for any parametrically-definable set X(y) and any natural number k, there is a formula θ^k(y) such that dim(X(y)) ≥ k iff θ^k(y).
- Property (2) was first defined by Poizat and Pillay as a property of "chirurgical" structures.
- All of these properties hold for pregeometric surgical structures, as defined by Gagelman.

Introduction	Proof	Future work
0000	000000	○○○●
Beyond o-minimality		

• Unfortunately, the second lemma's proof breaks down in this context.

- In part, this is because the 1-dimensional set that we chose, Γ, may not be definably complete, and so the definition of T fails.
- Nevertheless, we may hope that it is true. Namely:

Question

Introduction	Proof	Future work
0000	000000	000●
Beyond o-minimality		

- Unfortunately, the second lemma's proof breaks down in this context.
- In part, this is because the 1-dimensional set that we chose, Γ, may not be definably complete, and so the definition of T fails.
- Nevertheless, we may hope that it is true. Namely:

Question

Introduction	Proof	Future work
0000	000000	000●
Beyond o-minimality		

- Unfortunately, the second lemma's proof breaks down in this context.
- In part, this is because the 1-dimensional set that we chose, Γ, may not be definably complete, and so the definition of T fails.
- Nevertheless, we may hope that it is true. Namely:

Question

Introduction	Proof	Future work
0000	000000	000●
Beyond o-minimality		

- Unfortunately, the second lemma's proof breaks down in this context.
- In part, this is because the 1-dimensional set that we chose, Γ, may not be definably complete, and so the definition of T fails.
- Nevertheless, we may hope that it is true. Namely:

Question