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1.2.5.1. Let A ⊆ Rm and let f = (f1, . . . , fn) : A → Rn be a map with component functions

fi : A→ R. Show that f belongs to S if and only if each fi belongs to S.

f is to be considered a subset of Rm+n, and each fi a subset of Rm+1. Let f̄i = {(a, x1, . . . , xn) ∈

Rm+n | xi = fi(a)}. f̄i is in S through the axioms allowing cartesian multiplication by R and

permutations of variables. Then it is easily seen that f =
⋂

f̄i. Thus, f ∈ S.

Conversely, each fi is just the projection of f onto some version of Rm+1, so each is definable.

1.2.5.2. (Sheaf property) Let I be a finite index set, let A ∈ Sm be the union of the sets Ai ∈ Sm

(i ∈ I). Show that a map f : A→ Rn belongs to S if and only if all its restrictions f | Ai belong to S.

Clearly, if f ∈ S, then just taking f ∩ (Ai ×Rn), f | Ai is in S.

Conversely, suppose each restriction is in S, and let gi = f | Ai.
⋃

i gi = f , since gi and gj must

agree on any points Ai and Aj have in common. Thus f ∈ S.

1.2.5.3. Given A ⊆ Rm+n and x ∈ Rm we put Ax := {y ∈ Rn | (x, y) ∈ A}. Show that if A ∈ Sm+n

and k ∈ N, then the sets {x ∈ Rm | |Ax| ≤ k} and {x ∈ Rm | |Ax| = k} belong to S.

LetBi = {(x, y1, . . . , yk+1) ∈ Rm+(k+1)n | (x, yi) ∈ A}. LetB =
⋂

iBi. LetQ = {(x, y1, . . . , yk+1) ∈

Rm+(k+1)n | ∃i 6= j(yi = yj)}. Then the first set is (B \ Q)C , projected down to Rm. The second is

the first set, with the set for k − 1 removed.

1.2.5.4. Let the sets A,B,C and the function f : A × B → C belong to S. Show that the set

{a ∈ A | f(a, ·) : B → C is injective} belongs to S, and show also that the set {a ∈ A | f(a, ·) | B →

C} is surjective} belongs to S.

Let f̄ = {(a, c, b) | f(a, b) = c}. If a function is injective, every point in the image has at most one

pre-image, so the set of a’s where f is not injective corresponds to the set {a ∈ A | ∃c|f̄ |(a,c) > 1}.

This set is in S, by the previous problem, so its complement is as well.

Likewise, if f is surjective, then every point in C has at least one preimage, so the set where f is

not surjective is the set {a ∈ A | ∃c ∈ C|f̄ |(a,c) = 0} which is in S, and so its complement is too.

1.2.5.5. Let P ⊆ R be a nonempty subset belonging to S1. For m = 0, 1, 2, . . . put

(S|P )m := {A ∩ Pm | A ∈ Sm},

a boolean algebra of subsets of Pm. Show that S|P := ((S|P )m)m∈N
is a structure on P . (The

“restriction of S to P”.)
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Verification that (S|P ) satisfies the definition of a structure is routine.

1.2.5.6. Suppose S contains binary operations + : R2 → R and · : R2 → R with respect to which R

is a ring (always associative with 1 in this book). Show that S contains {0} and {1}, and that if

S contains A ⊆ Rm and the functions f, g : A→ R, then it contains the functions −f , f + g, and f · g

from A to R.

{0} is the set defined by + ∩ {(x1, x2, x3) ∈ R3 | x2 = x3}, projected down to the first coordinate.

{1} is the same thing with ·. −f is defined by taking f ×R×R and intersecting it with A×{(x1, x2) |

x1 + x2 = 0}, which is in S since the graph of addition is, and then projecting away the second

coordinate. f + g is defined by taking f × R × R, {(a, x, g(a), y) | a ∈ A}, A × +, and intersecting

them. f · g is defined similarly.

1.2.5.7. Suppose R = R and S contains the order relation
{

(x, y) ∈ R
2 | x < y

}

. Show that the

topological closure cl(A) of a set A ∈ Sm also belongs to S. Show that if a function f : R
m+1 → R

belongs to S, then the set

A := {a ∈ R
m | f(a, t) tends to a limit l(a) ∈ R as t→ +∞}

belongs to S, and the limit function l : A→ R so defined belongs to S.

Let (a, b] denote the half-open interval for any a, b ∈ R, even if a > b. The set cl(A) is defined to

be {(b1, . . . , bm) ∈ R
m | ∀c1, . . . , cm∃d1, . . . , dm(

∧

i di ∈ (ci, bi] ∧ d̄ ∈ A)}. Take the set R
2m × A and

intersect with the set {(b̄, c̄, d̄) | b̄ 6= c̄ ∧ ∀i ≤ n(di ∈ (ci, bi]} (obtained from < by repeated crossings

and then permutations), then project it down to R
2m. This consists of all pairs of points in R

m which

have a point of A “between” them. Taking the complement of this set gets all pairs of points which

do not have a point of A between them. Projecting down to R
m gives cl(A)C , which is therefore in S,

and so cl(A) is.

For the second part, the set A is {ā ∈ R
m | ∃b∀c∃T∀t(t > T → f(ā, t) ∈ (c, b])}. Using the fact that

all logical connectives and quantifiers preserve membership in S, this set is in S. The limit function is

{(ā, b) | ā ∈ A ∧ ∀c∃T∀t(t > T → f(ā, t) ∈ (c, b])}, which is likewise in S.

1.2.5.8. Suppose R = R and S contains the graphs of addition and multiplication. Show that S

contains the order relation
{

(x, y) ∈ R
2 | x < y

}

, and each singleton {q}, with q a rational number.

Show that if S contains a function f : I → R, with open I ⊆ R, then it contains the set I ′ :=

{x ∈ I | f is differentiable at x}, and the derivative f ′ : I → R.

We can define < to be the set {(x, y) | ∃z(x + z2 = y)}. Define 1 to be the unique element in

{x | ∀y(x · y = 1)}. Then each singleton q = a/b, a, b ∈ Z, to be {x | x · b̄ = ā}, where b̄ = 1 + . . .+ 1

(b copies of 1).

A function f is differentiable at a point a if the limit (f(x)− f(a))/(x− a) exists as x goes to a, or

in other words, if the two limits (f(a+ 1/t) − f(a))/(1/t) as t → ∞ and (f(a) − f(a− 1/t))/(1/t) as
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t→ ∞ exist and are equal to each other. The set on which they exist is in S by the previous problem,

and the set where they are equal is easily seen to be in S as well. On this set, I ′, the derivative is

defined to be this limit, and since the limit at a point is in S, the derivative will be too.

1.3.6.1. The definably connected subsets of R are the following: the empty set, the intervals, the

sets [a, b) with −∞ < a < b ≤ +∞, the sets (a, b] with −∞ ≤ a < b < +∞, and the sets [a, b] with

−∞ < a ≤ b < +∞.

The empty set is clearly definably connected. We take the remaining cases together. Let I be any

such “interval,” and assume it is not definably connected. Then there would be U, V , disjoint open

sets such that U ∩ I and V ∩ I are non-empty and cover I. By o-minimality, U and V are both finite

unions of intervals. Write U = (a0, b0) ∪ . . . ∪ (an, bn), with ai < bi < aj < bj, for i < j (aO possibly

−∞, bn possibly ∞). Let B = {ai, bi | i ≤ n}. I claim I ∩ B 6= ∅. For if not, then for some i,

ai ≤ a < b ≤ bi, or bi ≤ a < b ≤ ai+1, or b ≤ a0 or bn ≤ a. In the first case, I ⊆ U , except possibly for

one or two endpoints. However, then V must contain such a point, and since it is open, contains an

interval around that point, and so intersects U . This is impossible, so I ⊆ U , but then V ∩ I is empty,

which is again impossible, so the first case is out. In the other cases, I is disjoint from U , which is

impossible too.

1.3.6.2. The image of a definably connected setX ⊆ Rm under a definable continuous map f : X → Rn

is definably connected.

If f is continuous, it is easy to see that the inverse image of an open set is open. Thus, if f(X)

were not definably connected, we could take the inverse images of U and V , witnesses to the failure of

definable connectedness, and X would not be definably connected.

1.3.6.3. If X and Y are definable subsets of Rm, X ⊆ Y ⊆ cl(X), and X is definably connected, then

Y is definably connected.

Suppose Y is not definably connected. Let U and V be open subsets of Y witnessing this. Consider

U ′ = U ∩ X and V ′ = V ∩X . They are certainly disjoint and open in X , so if they are non-empty,

then we are done. Assume V ′ = ∅. Then V ⊆ cl(X) \X . Consider any open set around a ∈ V . Since

a ∈ cl(X), there is a point x ∈ X which is in the open set. But since this is true for any open set, V

cannot be open, which is impossible. Thus V ′ 6= ∅, likewise for U ′, and so X is not definably connected.

1.3.6.4. If X and Y are definably connected subsets of Rm and X ∩ Y 6= ∅, then X ∪ Y is definably

connected.

Suppose X ∪ Y is not definably connected, and let U and V be subsets of X ∪ Y witnessing this.

Then U ∩ X and V ∩ X are open and disjoint, so one must be empty. WLOG, let X ⊆ U . By the

same argument, we have Y ⊆ U or Y ⊆ V , but in the first case, U covers X ∪ Y , which is impossible,

so Y ⊆ V . But then X ∩ Y is in both U and V , so they are not disjoint.
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1.3.7.1. Let S ⊆ Rm+n be definable. Show: (i) {x ∈ Rm | Sx is open} is definable. (ii)
{

(x, y) ∈ Rm+n | y ∈
∫

(Sx)
}

is definable.

(i) Sx is defined to be {y | (x, y) ∈ S}. The statement “Sx is open” is equivalent to the statement

∀ȳ ∈ Sx∃u1, v1, . . . , un, vn(
∧

i yi ∈ (ui, vi)∧∀z̄(
∧

i zi ∈ (ui, vi) → zi ∈ Sx)) – that there is a box around

each point in Sx wholly contained in Sx. Combining the above two definitions gives a formula in x

true only when Sx is open.

(ii)
∫

(Sx) is definable by Lemma 3.4(i), so it is easy to see that the set (x, y) such that y ∈
∫

(Sx)

is definable. The statement is essentially that there exists a box around y entirely contained in Sx.

1.5.9.1. Let R = (R, . . .) be a model-theoretic structure, C ⊆ R, and A ⊆ Rn. Show that A is

definable in R using constants from C if and only if there exist a set S ⊆ Rm+n definable in R, and

elements c1, . . . , cm ∈ C such that for all (x1, . . . , xn) ∈ Rn

(x1, . . . , xn) ∈ A↔ (c1, . . . , cm, x1, . . . , xn) ∈ S

.

If A is definable in R using constants from C, then, using the fact that the operations which pre-

serve membership in a structure have logical analogues, we can write A as ϕ(x1, . . . , xn), where ϕ is

a formula in the language of RC . Let c1, . . . , cm be the elements of C which appear in ϕ. Replace

the occurrences of c1, . . . , cm with y1, . . . , ym to get ϕ(y1, . . . , ym, x1, . . . , xn)′. By the equivalence

of structure membership and logical formulas, we can find S such that ϕ(y1, . . . , ym, x1, . . . , xm)′ ↔

(y1, . . . , ym, x1, . . . , xm) ∈ S. So (c1, . . . , cm, x1, . . . , xn) ∈ S ↔ ϕ(c1, . . . , cm, x1, . . . , xn)
′. But ϕ(c1, . . . , cm, x1, . . . , xn)

′

by definition is just ϕ(x1, . . . , xn), and ϕ(x1, . . . , xn) ↔ (x1, . . . , xn) ∈ A.

1.5.9.2. Let R = (R, . . .) be a model-theoretic structure and S ⊆ Rm+n definable in R. Show that if

a ∈ Rm is definable in R, then the set Sa := {b ∈ Rn | (a, b) ∈ S} is definable in R.

Let ϕ(x) define a, and ψ(x, y) define S. Then ∃x(ψ(x, y) ∧ ϕ(x)) defines Sa.

1.5.9.3. Let R = (R,<, 0, 1,−,+, ·) be the ordered field of real numbers. Show that each function

f : R
m → R defined by a polynomial f(X1, . . . , Xm) ∈ RX1, . . . , Xm is definable in R using constants.

Derive that each semialgebraic set in R
m (see “Introduction and Overview”) is definable in R using

constants.

Let f(X1, . . . , XM ) be the polynomial giving any such function. Note that the coefficients of the

terms may be arbitrary real numbers. The formula y = f(x1, . . . , xM ) gives a definable set in R

using constants (since exponentiation to a constant is just repeated multiplication), which is clearly a

function. Since a semi-algebraic set is a finite union of such sets and sets of the form y > f(x1, . . . , xM ),

it is definable.

1.7.8. The subsets of Rm definable in the LF -structure R using constants are exactly the semilinear

sets in Rm (LF := {<, 0,−,+} ∪ {λ· | λ ∈ F , so R is a vector space over F ).
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Note that in LF , any term is of the form λ1x1 + . . .+λnxn (any − signs can be subsumed into the

λi’s). Thus, atomic formulas are of the form λ1x1 + . . .+λnxn(> | =)0, which are the basic semilinear

sets. Boolean combinations of these yield the semilinear sets. The only question then is whether all

formulas, not just atomic ones, yield semilinear sets. The answer is yes, since by Corollary 7.6, the set

of all semilinear sets is a structure, and thus closed under quantification, the only remaining logical

operation.

1.7.12. Let R be a nontrivial ordered vector space over an ordered division ring F , and consider

R as an LF -structure. Show that the maps R → R that are additive and definable using constants

are constants are exactly the scalar multiplications by elements of F . (Hence these maps are actually

definable without using constants.)

We know that R is o-minimal, so any definable function, f , is semilinear. Since f is a function,

each basic semilinear set must include an equation of the form λ1x + λ2y + a = 0. Since f is a finite

union of basic semilinear sets, one basic semilinear set, U , must contain (x, f(x)) for all sufficiently

large x. Let M be such that x > M → (x, f(x)) ∈ U . Let U ’s equation be λx+ a = y. However, since

x+ x > x, λ(x+ x) + a = λx+ λx+ a+ a, showing that a = 0. Now, for any other x, let λ′x+ a′ = y

be the equation in the basic semilinear set which includes (x, f(x)) (there is exactly one, since f is a

function). Take y > M such that x + y > M . Then f(x) = f(x + y) − f(y) = λ(x + y) − λy = λx.

Thus, f(x) = λx. Since this is true for any x ∈ R, f(x) = λx.

2.1.4.1. Let f = f(X1, . . . , Xm) ∈ F [X1, . . . , Xm] be a polynomial with coefficients in the field F , and

let d1, . . . , dm ∈ N be such that degXi
f ≤ di for i = 1, . . . ,m. Show that if f vanishes identically on a

cartesian product A1 × · · · ×Am with |A1| > d1, . . . , |Am| > dm (all Ai ⊆ F ), then f = 0.

By induction. For the case m = 1, note that if f(a) = 0 for some a ∈ F , then (X − a)|f in F (X),

(X − a) 6 |(X − b) if a 6= b, and deg(gh) = deg(g) + deg(h) unless g = 0 or h = 0. Thus, if f has degree

less than d, it can have no more than d roots, unless the factorization of f includes 0, or in other words,

if f = 0.

If m = n+ 1, let d = dn+1 and write f as TdX
d
n + · · ·+ T0. Fix (a1, . . . , an) ∈ A1 × · · · ×An. Then

f(a1, . . . , an, X) is a polynomial in one variable. By the case m = 1, f(a1, . . . , an, X) = 0, and so each

Ti = 0. This is true for every (x1, . . . , xn) ∈ A1 × · · · ×An. But now each Ti falls under the induction

assumption, and so each is 0, and thus f = 0.

2.1.4.2. Let F be an ordered field and f ∈ F [X1, . . . , Xm], f 6= 0. Show that the zero set Z(f) :=

{a ∈ Fm | f(a) = 0} is a closed subset of Fm with empty interior.

It is easy to see that Z(f)C is open, since f is continuous. If Z(f) had non-empty interior, then it

would contain a box, but then, since F is dense, it would contain a cartesian product in which each

set had infinitely many elements, which is impossible by the previous problem.
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2.3.3. With the same assumptions as in Lemma 2.3.2, set ζ0 := −∞, ζr+1 := +∞. Fix an i ∈ {0, . . . , r}

and put ǫ(n) = sign (fn|(ζi, ζi+1)). Then we have (a) (ζi, ζi+1) = {(x, t) ∈ C × R | sign (fn(x, t)) = ǫ(n) for n = 1, . . . , N},

(b) cl(ζi, ζi+1) = {(y, t) ∈ cl(C) × R | sign (fn(y, t)) ∈ {ǫ(n), 0} for n = 1, . . . , N}

(a) Let B′ = {(x, t) ∈ C × R | sign (fn(x, t)) = ǫ(n) for n = 1, . . . , N}. Fixing x, let B′(x) be the

projection to the t coordinate. By Thom’s lemma, B′(x) is either empty, a point, or an interval. It is

thus an interval. If for all f , f(x, T ) = f(ζi(x)) for ζi(x) < T < ζi+1(x), then, since Γ(ζi) is contained

in the zero set of some fn, fn must be 0 on this interval, which is impossible. Thus, one endpoint of

the interval is ζi(x). A similar argument shows the other end is ζi+1(x). This is true for all x ∈ C, and

so B′ =
⋃

B′(x) = (ζi, ζi+1).

(b) Note that if fn is positive on (ζi, ζi+1) it cannot be negative on Γ(zetai), since, fixing x, by

the intermediate value theorem it would have to be 0 for some (x, t), ζi(x) < t < ζi+1(x), which is

impossible, since fn is positive on the entire interval. Thus, for any x, sign(fn(ζi(x))) ∈ {ǫ(n), 0}.

Now, let B′ = {(y, t) ∈ cl(C) × R | sign (fn(x, t)) ∈ {ǫ(n), 0} for n = 1, . . . , N}, and let B′(x) be as

before. By lemma 3.2(b), each ζ extends uniquely to a continuous function η on cl(C). By the second

half of Thom’s lemma, B′(x) = cl(ζi(x), ζi+1(x)) for x ∈ C. For y ∈ cl(C), we use the same argument

as used in the proof of 3.2(b): for any fixed t ∈ (ηi(y), ηi+1(y)), we first restrict to a neighborhood

U of y such that for x ∈ U ∩ C, t ∈ (ζi(x), ζi+1(x)). sign(fn(x, t)) = ǫ(n) for all x ∈ U ∩ C, so

sign(fn(y, t)) ∈ {ǫ(n), 0}. This is true for each n and each t, so [ηi(y), ηi+1(y)] ⊆ B′(y). Using

part (a), and Thom’s lemma (that B′(y) is connected), it is easy to see that equality holds. Since

B =
⋃

y∈cl(C)B
′ =

⋃

y∈cl(C)(ηi(y), ηi+1(y)) = (ηi, ηi+1).

2.3.7.1. Let Q(X,Y ) ∈ R[X,Y ] be a nonzero polynomial in two variables. Show that there are d ∈ N

and M > 0 such that if (x, y) ∈ R
2, x > M and Q(x, y) = 0, then |y| ≤ xd.

Write Q as a polynomial in y with coefficients in x, Any
n+ . . .+A0, where each Ai is a polynomial

in x. Let d = max({deg(Ai) − deg(An) | i < n}, 0) + 1. Let M be such that for all x > M and i < n,

xd > 1 + (Ai(x)/An(x)). Then by lemma 1.1, we are done.

2.3.7.2. Show that if g : R → R is semialgebraic, then there are d ∈ N and M > 0 such that |g(x)| ≤ xd

for all x > M .

Γ(g) is semialgebraic, but since g is a function, it must just be piecewise the zero set of a polynomial.

Restricting to the last piece (the interval N < x < ∞ for some N ∈ N), we are back in the previous

problem.

2.3.7.3. Suppose a continuous function g : R
m → R satisfies Q(x, g(x)) = 0 for all x ∈ R

m and some

nonzero polynomial Q(X,T ) ∈ R[X,T ], X = (X1, . . . , Xm). Show that then g is semialgebraic.

Treating g as a set, we know that g ⊆ Q(x, y). For any fixed x, either Q(x, y) is 0 or not. If

not, then it has only finitely many roots, and g(x) is one of them. Let Q(x, y) have e roots. We
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know from lemma 2.6 that the set Ke{z | Q(z, y) has e roots} is semilinear. We know that g(z)’s

place in the ordering of the roots does not change on this set. Let it be the kth root. Consider the

set ge = {(z, y) | Q(z, y) = 0 ∧ ∃=k−1y′(Q(z, y′) = 0)}. It is definable, and therefore semilinear, and

defines g on Ke. Thus, we can define g for all x such that Q(x, y) has only finitely many roots. This

leaves the cases where Q(x, y) = 0. If we write Q(X,T ) = AnT
n + . . .+A0, with the Ai’s polynomials

in X , Q(x, T ) = 0 means that An(x) = · · · = A0(x) = 0. By exercise 2.1.4.1, we know that the

set Z = {x | Q(x, T ) = 0} is a closed subset with empty interior. Thus, for each z ∈ Z and U an

open set containing z, we can find x /∈ Z, x ∈ U . By o-minimality, for sufficiently small U we can

find such x belonging to a single Ke. Define x ∈ (v, w), where x, v, w ∈ R
m, to mean xi ∈ (vi, wi),

for i ≤ m. We can then use a limit function, defined as ḡe = {(x, y) | x ∈ cl(Ke) ∧ ∀y′ < y, y′′ >

y∃v, w∀u(x ∈ (v, w) ∧ (u ∈ (v, w) ∧ u ∈ Ke → ge(u) ∈( y
′, y′′)))}, which, since g is continuous, will

yield g| cl(Ke). Thus, ḡe extends ge to cl(Ke), which includes z. We can therefore extend each of these

finitely many definable functions, which together cover R
m (they will be compatible on their common

domains because of their definitions as limits of the same continuous function), which yields a definition

for g.

3.1.9.1. Suppose the function f : (a, b) → R on the interval (a, b) is definable. Show there exist

elements a1, . . . , ak withe property of the monotonicity theorem such that a1, . . . , ak are definable in

the model-theoretic structure (R,<,Γ(f)).

By the monotonicity theorem, we can find a′1 = a, . . . , a′m = b such that between these points, f is

constant, or monotone and continuous. Note that a and b are definable from Γ(f). Set a1 = a′1. Suppose

on (a′1, a
′

2), f is monotone increasing. Then the set {x | x ∈ (a, b)∧∀a1 < y < x(f is continuous at y ∧

f is increasing at y) ∧ (f is not continuous at x ∨ f is not increasing at x)} has a unique element. Let

it be a2. Then on (a1, a2), f is monotone and continuous. Since for all y < a2, f is monotone

increasing and continuous, and f is not monotone increasing and continuous at a2, a2 must be a′i for

some i > 1. Suppose f is constant on (a′i, a
′

i+1). Then consider the set {x | x ∈ (a2, b) ∧ ∀a2 <

y < x(f is constant) ∧ f is not constant at x}. It has one element, a3. Repeating this procedure yields

a1, . . . , ak with the desired properties.

3.1.9.2. Let I and J be intervals and f : I → R and g : J → R strictly monotone definable

functions such that f(I) ⊆ g(I) and lims→r(I) f(s) = limt→r(J) g(t) in R∞, where r(I) and r(J) are

the right endpoints of the intervals I and J in R∞. Show that near these right endpoints f and g are

reparametrizations of each other, that is, there are subintervals I ′ of I and J ′ of J , with r(I) = r(I ′),

r(J) = r(J ′) and a strictly increasing definable bijection h : I ′ → J ′ such that f(s) = g (h(s)) for all

s ∈ I ′.

Let h(s) = µt(g(t) = f(s)), where µ signifies “the least.” h is clearly definable, and is a function

since g is strictly monotone and g’s range includes f ’s. h is a bijection since f is strictly monotone:
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if h(s1) = h(s2), then f(s1) = f(s2), which is impossible. h has domain I and range J ′ = {j | ∃i ∈

I(f(i) = g(j))}.

Assume f and g are monotone in opposite directions, say decreasing and increasing, respectively.

Then for t sufficiently close to r(I), s sufficiently close to r(J ′), f(x) < g(y), for all r(I) < x < t,

r(J) < y < s, since they have the same limit, and thus must approach it from different sides. But then

f(x) < g(y) for all x ∈ I, y ∈ J ′, which is impossible, since f(I) ⊆ g(J). The same argument works

when f is increasing and g is decreasing, so they must both be going in the same direction. Given this,

h is clearly increasing, so we are done.

3.2.19.1. Let C ⊆ Rm be a regular open cell and f : C → R a regular definable function. Show that

the open cells (−∞, f), (f,+∞), and C×R = (−∞,+∞) in Rm+1 are regular. Show that if g : C → R

is a second regular definable function with f < g, then the open cell (f, g) in Rm+1 is regular.

First we check regularity for i < m+ 1. Let x and y differ only on the ith coordinate, say xi < yi,

and let z agree with x and y on everything but the ith coordinate. By regularity, the projection of z to

Rm, π(z), is in C. This takes care of C ×R. Now consider (−∞, f). f is regular, assume it is strictly

increasing on the ith coordinate, so f(π(z)) ∈ (f(π(x)), f(π(y))). But zm+1 = xm+1. xm+1 < f(π(x)),

so zm+1 < f(π(z)), and z ∈ (−∞, f). If f is strictly decreasing, the same argument with y works. If

f is the left endpoint, a similar argument works, and of course g as the right endpoint has the same

argument.

Now we check for i = m + 1. But this is trivial, since if z differs from x and y only on the last

coordinate, then π(z) = π(x) = π(y), so π(z) ∈ C, and gm+1 lies on the interval between xm+1 and

ym+1, and thus g must be in the open cell.

3.2.19.2. Prove by induction on m the regular cell decomposition theorem.

Going through the proof of the cell decomposition theorem, we see that in the proof of Im+1, that

any definable set has a decomposition, first cells in Rm are constructed (obtained through the inductive

assumption), along with some functions on these cells. By induction, these cells can be made regular.

As well, they can be decomposed so that the functions are regular on these cells. Then the actual

decomposition, formed by using these functions on these cells, will be regular by the previous problem.

For IIm+1, by the cell decomposition theorem, we can decompose f so that it is continuous. By

the first part here, the decomposition can be regular. We can thus restrict to the case of a continuous

function f on a regular cell, C ⊂ Rm+1. On each x ∈ Rm such that (x, t) ∈ C for some t ∈ R, the

monotonicity theorem applies to f(x, ·), which is defined on some interval by the regularity of C. Let

k(x) denote the number of points at which f(x, ·) changes its type (from constant to monotone, etc.),

and let the set of such points be A(x). By uniform finiteness, there is an upper bound to k(x) on C,

so we can partition C so that k(x) is constant. We now restrict to a cell in this new partition. Let

a1(x), . . . , ak(x) denote the points of A(x). Restricting, we can assume that the ai’s are continuous
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and regular, by induction. Restricting further, we can assume that f is continuous on a regular cell

C and f(x, ·) is monotone in the same way for every x ∈ π(C). Now repeat this for each coordinate

(there was nothing special about the last coordinate) to make f monotone on every coordinate, and

thus regular.

3.2.19.3. Let C be a cell in Rm, D = (α, β)C a cell in Rm+1 and f : D → R a definable function such

that for all x ∈ C the function f(x, ·) : (α(x), β(x)) → R is continuous. Show that C can be partitioned

into cells C1, . . . , Ck such that, with αi = α|Ci, βi = β|Ci, each restriction f |(αi, βi) : (αi, βi) → R is

continuous.

By cell decomposition, we can partition D so that f is continuous on each cell in D. Let D be the

decomposition. Note that if B,B′ ∈ D, then π(B) and π(B′) are either equal or disjoint, where π is

the projection map from Rm+1 to Rm. Consider the decomposition of D given by {E×R | E ∈ π(D)}.

Denote it E . Let E ∈ E be any cell. We show f |E is continuous. Let E = B0 ∪ . . . ∪ Bl, Bi ∈ D. Let

g1, . . . , gk : Rm → R be the boundary functions. We need only check continuity on the boundaries, since

it is a local property. But this is easy – given (x, t) on a boundary, suppose we want |f(ū)−f(x, t)| < ǫ.

Let t = g(x), where g(x) is some boundary function. By the continuity of x on the boundary, we can

find a definable open set U such that if y ∈ π(E) and (y, g(y)) ∈ U , then |f(y, g(y)) − f(x, t)| < ǫ/2.

Let V be the set of such y’s. By continuity of f(x, ·), for each y ∈ V , there exists an interval I(y) about

g(y) such that for r ∈ I(y), |f(y, r) − f(y, g(y))| < ǫ/2. I(y) is clearly definable. Thus, if we consider

the set W = {(y, s) | y ∈ V ∧s ∈ I(y)}, for every u ∈W , |f(u)−f(x, t)| < ǫ, by the triangle inequality.

W is easily seen to contain the intersection of an open set with E: π(U) contains the intersection of

an open set with π(E), B, and then the construction of W keeps it open, since each point is crossed

with an interval (in Van den Dries’ notation, if B is a (. . .) cell, W is a (. . . , 1) cell).

3.2.19.4. Improve the cell decomposition theorem as follows: (Im) If the sets A1, . . . , Ak ⊂ Rm are

definable, then there is a decomposition of Rm partitioning each set Ai, all of whose cells are definable

in the model-theoretic structure (R,<,A1, . . . , Ak). (IIm) Let the function f : A → R, A ⊆ Rm, be

definable. Then there is a decomposition D of Rm partitioning A, such that the restriction f |B to each

cell B ∈ D with B ⊆ A is continuous, and each cell in D is definable in the model-theoretic structure

(R,<,Γ(F )).

Going through the proof of Im in the usual cell decomposition theorem, we see that the boundaries

of the sets A1, . . . , Ak are definable from them, so Y is definable, so its fibers are, so the Bi’s are. The

functions fij are definable, since they are definable from the Yx’s. Likewise, the Cλij ’s and Dλij ’s are

definable. Thus, the decomposition D (which by our inductive hypothesis, modified for this problem,

can be defined solely in terms of the B’s, C’s, D’s, and f ’s) is definable from the A’s. The final

decomposition, D∗, comes from D through the f ’s, which were definable.

For IIm, note that the domain of a definable function is definable. Thus A is definable. The
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homeomorphism pA : A → p(A) is definable from A (although not uniformly so). Then the inductive

assumption, modified to this problem, finishes things if the cell is not open.

The set of well-behaved points, A∗, is definable from A and f , since boxes are always definable, and

continuous and monotone are always definable. The fact that A∗ is dense in A does not depend on our

language. Then the decomposition, D, which partitions A∗ and A is definable from them by induction,

and thus from f , since they are. Finally, the proof that f is continuous on D is language-independent.

3.2.19.5. Let X1, . . . , Xk ⊆ Rm be distinct nonempty definably connected sets and X their union.

Define a graph with vertex set {X1, . . . , Xk} by putting an edge between Xi and Xj (i 6= j) if Xi ∩

cl(Xj) 6= ∅ or cl(Xi)∩Xj 6= ∅. Show that if Xi(1), . . . , Xi(r) are the vertices of a connected component

of this graph, then Xi(1) ∪ . . . ∪Xi(r) is a definably connected component of X , and that all definably

connected components of X are of this form.

Define A B to be the relation A∩ cl(B) 6= ∅ or B∩ cl(A) 6= ∅. Suppose A B, and A,B are definably

connected. WLOG, let A∩cl(B) 6= ∅. Let Y = A∪B. Suppose U, V witnessed Y ’s being not definably

connected. Since A is definably connected, it is covered by either U or V . WLOG, let it be U . Then

by a similar argument, V covers B. Since U and V are disjoint, U = A, V = B. Then U ∩ cl(V ) 6= ∅.

Let u be in this intersection. Since u ∈ U , we can find an open W ⊆ U , u ∈ W . But since u ∈ cl(V ),

any open set containing u intersects V . Then U and V intersect non-trivially, which is impossible.

Thus A ∪B is still definably connected.

Note that if A = A1 ∪ A2, A B ↔ A1 B ∨ A2B̃, by the properties of cl(). Thus, the above result

shows that any connected component of the graph is definably connected.

We now show that among the 2k sets formed from the unions of X1, . . . , Xk, these connected

components of the graph are maximal with respect to being definably connected. Consider any Xi,

Xi 6⊆ S. Since S comes from a connected component of the graph, we know that cl(S) ∩Xi = ∅ and

S ∩ cl(Xi) = ∅. Thus, S and Xi are open in S ∪Xi, so S ∪Xi is not definably connected.

Such sets are connected components of X : Let S be such a set and consider any Y , definably

connected, such that S ∩ Y 6= ∅. Since X1, . . . , Xk cover X , Y is covered as well. Let P = {Xi |

Xi ∩ Y 6= ∅. Then S ∪
⋃

P is definably connected (because Y is). But since S is maximal among the

2k sets, and S ∪
⋃

P is one of these, S ∪
⋃

P = S, so Y ⊆ S, and so S is maximal.

It remains to prove that these are all the connected components. But this is trivial – any connected

component intersects some Xi’s, which can be extended to form some S, a connected component from

the graph, which intersects the connected component we already had and therefore contains it by the

previous result.

3.2.19.6. Suppose S′ is an o-minimal structure on (R,<) with S ⊆ S′, and let X ⊆ Rm belong to

S, so X also belongs to S′. Show that X is definably connected in the sense of S if and only if X is

definably connected in the sense of S′.
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In the forward direction, let D be a decomposition partitioning X in S. If the graph (as defined

above) of D is connected, then X is too, assuming that the members of D are all connected. So the

question is whether a cell in S is necessarily definably connected in S ′. But any cell in S is a cell in

S′, and any cell in S′ is definably connected in S′. Thus, X is definably connected in S′. The reverse

implication is trivial.

3.2.19.7. Suppose S is an o-minimal structure on the ordered set (R, <) of real numbers. Show that for

a definable set X ⊆ R
m the following are equivalent: (a) X is definably connected, (b), X is connected

in the usual topological sense.

(b) implies (a) trivially, so assume X is definably connected. We show X is connected. Since X

is definably connected, it has exactly one connected component. But this implies that the graph of

a cell-decomposition of X is connected, as done above. Cells are certainly connected in the usual

topology, so their union will be connected, because of the closure property used in constructing the

graph.

3.2.19.8. With the same hypothesis as in exercise 7, show that each definable set X ⊆ R
m is locally

connected, that is, for each x ∈ X and each open subset U of X containing x there is a connected open

subset V of X containing x and contained in U .

Since any open set inX contains a box intersected withX , we can restrict the discussion to definable

sets. So we have a definable open set U containing x in X . Take a cell decomposition partitioning U

and X . Take the connected component of U which contains x. Then this component is open in U , and

thus in X (since U is open in X), and it is connected and contains x.

3.3.8. Let R = (R,<, . . .) be an o-minimal L-structure and R′ = (R′, <′, . . .) an L-structure elemen-

tarily equivalent to R. Show that R′ is also o-minimal.

For any ϕ(x, ȳ), let k be the most boundary points ϕ(x, ā) ever has for any choice of ā ∈ Rm. Given

x1, . . . , xk, x, let σ(x1, . . . , xk, x) denote an ordering (possibly with some equalities) of x1, . . . , xk, x.

Let σȳ denote the ordering such that ϕ(x, ȳ) holds, with x1, . . . , xk the boundary points, with xl =

xl+1 = . . . = xk if there are l < k boundary points. Let Σ = {σȳ | ȳ ∈ Rm}. Then

R |= ∀ȳ∃x1, . . . , xk(
∨

Σ

∀x(ϕ(x, ȳ) ↔ σ(x1, . . . , xk, x)))

Since R′ ≡ R, R′ satisfies the same sentence. But the above sentence says that ϕ defines an o-minimal

set, for any parameters. Since ϕ was arbitrary, this means every definable set in R′ must be o-minimal.

4.1.17.1. Let A ⊆ Rm be definable and ) ≤ d ≤ m. Show that dimA ≥ d if and only if there is a

d-tuple i = (i(1), . . . , i(d)) with 1 ≤ i(1) < · · · < i(d) ≤ m such that the projection map pi : Rm → Rd

given by pi(x1, . . . , xm) =
(

xi(1), . . . , xi(d)
)

has the property that pi(A) has nonempty interior in Rd.
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If dim(A) ≥ d, then A contains an (ǫ1, . . . , ǫm)-cell, where epsiloni ∈ {0, 1}, and
∑

i ǫi ≥ d. Then

let i(1) be the least i such that ǫi = 1, i(2) the next i such that ǫi = 1, and so on. Then the projection

of this cell to Rd yields an open cell, and thus pi(A) will have nonempty interior.

Conversely, if we have an A with the stated property, let A′ be the image of A under the definable

bijection which sends xi(j) to xj . Then we know that p(A′), where p projects down to the first d

coordinates, has nonempty interior. Let D be a decomposition of A′. p(D′) is a decomposition of

p(A′), so for some C ∈ D′, p(C) has nonempty interior in Rd, so it is open, so it is a (1, . . . , 1) cell.

Then C must have dimension at least d, so A′ does, so A does.

4.1.17.2. Let A ⊆ Rm be a definable set and a ∈ Rm. Show there is a number d ∈ {−∞, 0, . . . ,dimA}

such that dim(U ∩A) = d for all sufficiently small definable neighborhoods U of a in Rm, that is, for

all definable neighborhoods of a in Rm that are contained in some fixed definable neighborhood of a

in Rm.

Let D be a decomposition partitioning A. Let E = {D ∈ D | a ∈ cl(D)}. Then I claim that

e = max({dim(D) | D ∈ E}) is the required constant. Let U be any open set containing a. Then

U∩D 6= ∅ for anyD ∈ E. It is easy to see that, since U contains a box, that dim(U∩D) = dimD. Thus,

for any open U , dim(U ∩A) is certainly at least e. As well, dim(U ∩A) = max({dim(U ∩D) | D ∈ D}).

Taking V open such that V ∩D = ∅ for D /∈ E, we see that for U ⊆ V , dimU ∩A ≤ e, and thus = e.

4.1.17.3*. Show that if A is a d-dimensional cell, then dima(A) = d for all a ∈ cl(A).

This follows from the previous problem by taking D to be {A}.

4.1.17.4. Let A ⊆ Rm be a definable set and d ∈ {0, . . . ,dimA}. Show that the set {a ∈ Rm |

dima(A) ≥ d} is a definable closed subset of cl(A). Show also that ifA 6= ∅, then dim ({a ∈ cl(A) | dima(A) < d}) <

d.

Let D be a cell decomposition of A (note D is definable). By the arguments of 17.2, an element

x is in the set defined by dimx(A) = d if and only if x is in the closure of D for some D in D with

dim(D) = d. Since there are only finitely many D ∈ D, and each D is definable, along with its

dimension, this set is definable.

For the second part, note that the desired set consists of
⋃

{cl(D) | dim(D) < d}, and since cl

preserves dimension, and it is a finite union, the union has dimension less than d.

5.2.14.1. Finish the proof of (2.12) by showing that V (pos(L)) ≥ m+ 1.

Choose f1, . . . , fm, and a1, . . . , am ∈ X , fi(aj) = 0 for i 6= j, fi(aj) = 1 for i = j. (These can be

chosen by basic linear algebra.) Then for u ⊆ {1, . . . ,m}, let fu = Σiδifi, where δi = 1 if i ∈ u, δi = 0

if i ∈ u. Then pos(fu) = {ai | i ∈ u}.

5.2.14.2. Show that fΦ∨Ψ ≤ fΦ · fΨ, and derive that fΦ∧Ψ ≤ fΦ · fΨ.
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Note that (Φ ∨ Ψ)x = Φx ∪ Ψx. For any x(1), . . . , x(n) ∈ X , B((Φ ∨ Ψ)x(1), . . . , (Φ ∨ Ψ)x(1)) ⊆

B(Φx(1), . . . ,Φx(n),Ψx(1), . . . ,Ψx(n)). But the second boolean algebra is generated by the atoms in the

boolean algebras for Φ and Ψ. There are at most pfΦ(n) and pfΨ(n) atoms in those, respectively.

Thus, the number of atoms in the boolean algebra is the product of these two. The degrees of the

polynomials are fΦ − 1 and fΨ − 1, so their product has degree fΦ + fΨ − 2. Thus, the number of

atoms is given by a polynomial of degree ≤ fΦ + fΨ − 2, which will be less than pfΦ+fΨ−1(n), so

fΦ∨Ψ ≤ fΦ + fΨ − 1 ≤ fΦ · fΨ.

Using the fact that f¬Φ = fΦ, it is easy to show that fΦ∧Ψ ≤ fΦ · fΨ.

5.2.14.3. Show that if Φ and Ψ are dependent, then Φ ∨ Ψ and Φ ∧ Ψ are dependent.

Trivial from the previous problem.

5.2.14.4. Derive from the previous two exercises and proposition (2.12) that every semi-algebraic

relation Φ ⊆ R
M × R

N (M,N > 0) is dependent.

Given any Φ, let f1(X1, . . . , XM , Y1, . . . , YN ), . . . , fn(X1, . . . , XM , Y1, . . . , YN ) be the polynomials

used to define the set. Let fi have degree mi in the Yj ’s. Then the set of positive values of polynomials

of degree ≤ mi has finite VC-index, by proposition (2.12). So {pos(fi(a, Y1, . . . , YN )) | a ∈ R
M} has

finite VC-index. Φ is the result of a finite boolean combination of these sets, and so by the above

problems, is dependent.

6.1.15.1. Show that the definable set of representatives indicated in the proof of (1.2) is definable

in the model-theoretic structure (R,<, 1,+, E). (Recall that this set of representatives is given by

T := {e(A) | A is an equivalence class}.)

Note that e(X), for X = ϕ(R, y), is given by a formula which uses ϕ(x, y). (It is

ϕ(x, y)

∧ (∀z < x(¬ϕ(z, y))

∨ (∀z(ϕ(z, y) → ∃u < z(ϕ(u, y)))

∧ ((x = 0 ∧ ∀z∃u < z,w > z(ϕ(u, y) ∧ ϕ(w, y)))

∨ (∃z(∀u < z(ϕ(u, y)) ∧ ¬ϕ(z, y) ∧ x = z − 1))

∨ (∃z(∀u > z(ϕ(u, y)) ∧ ¬ϕ(z, y) ∧ x = z + 1))

∨ (∃z1, z2 > z1(∀w < z1(¬ϕ(w, y)) ∧ ∀z1 < u < z2(ϕ(u, y)) ∧ ¬ϕ(z2, y) ∧ x+ x = z1 + z2)))))

.)

Let it be eϕ(x, y). Let ϕ(x, y) = E(x, y). Then T can be defined as ∃y(eϕ(x, y)).

6.1.15.2. Show that E has only finitely many equivalence classes of dimension dim(X), and that each

of them is definable in the model-theoretic structure (R,<, 1,+, E).
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Consider the set S = eϕ(x, y) ⊂ X ×X , as defined above. By a result on dimension (proposition

4.1.5), the fibers Sx which have dimension dim(X) form a definable set, definable from S, and thus

definable in this structure. This set has to have dimension 0, from another part of the same result.

Thus, it is finite. Since each equivalence class with dimension dim(X) is mapped to a distinct point in

this set, there can be only finitely many such classes.

6.1.15.3. Suppose all equivalence classes of E have the same Euler characteristic e. Show that then

the Euler characteristic of X is a multiple of e. (In particular, this shows that for e > 1 there is no

definable equivalence relation on Rm all of whose equivalence classes have exactly e elements.)

Consider the definable injective map f : X → X ×X given by a → (eϕ(x, a), a). Then the Euler

characteristic of X is equal to the Euler characteristic of f(X). The projection map has fibers with

Euler characteristic e. and so by a previous result (corollary 4.2.11), the Euler characteristic of f(X)

is eE(π(eϕ(x, y))), and so it is a multiple of e.

6.1.15.4. (Uniform continuity) Let X ⊆ Rm be a closed and bounded definable set and f : X → Rn

a continuous definable map. Show that there is for each ǫ > 0 a δ > 0 such that whenever |x− y| < δ,

x, y ∈ X , we have |f(x) − f(y)| < ǫ.

Suppose not, for some ǫ. Then for each t > 0, there is some x ∈ X such that ∃y(|x − y| <

t∧ |f(x)− f(y)| > ǫ). Through definable curve selection, we can choose a curve, γ : (0, a) → X , which

picks out such an x for each t ∈ (0, a) and is continuous. limt→0 γ(t) exists, since each component of

γ is eventually monotonic, and thus has a limit, since X is bounded. Since X is closed, the limit is in

X . Then at this point, f will not be continuous. Since this is impossible, our assumption is false, so f

is uniformly continuous.

6.1.15.5. (Fixed point theorem) Let X be a nonempty closed bounded definable subset of Rm and

f : X → X a definable map such that |f(x) − f(y)| < |x − y| for all distinct points x, y ∈ X . Show

that f has a unique fixed point.

Define γ : (0, 1) → X by |f(γ(t)) − γ(t)| = t (using definable choice). Clearly the domain of γ

cannot have a minimum element, since |f(f(x)) − f(x)| < |f(x) − x|. So assume (0, ǫ] /∈ dom(γ) for

some ǫ > 0. Then define γ′(t) = γ(t+ ǫ), and we have a map which is defined in a neighborhood of 0.

Thus, since X is closed and bounded, the limit of γ′ is in X , and so there is an element of X such that

|f(x) − x| = ǫ, which contradicts our assumption about ǫ, so actually γ is defined on a neighborhood

of 0, and so its limit, which is in X , is a fixed point.

6.1.15.6. (Uniform curve selection) LetX ⊆ Rm be definable. Show there are definable maps ǫ : ∂X →

(0,∞) and Γ : ∂X × (0, ǫ) → X such that for each a ∈ ∂X the function t → Γ(a, t) : (0, ǫ(a)) → X is

continuous, injective and satisfies limt→0 Γ(a, t) = a.
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For each a ∈ ∂X and t ∈ (0,∞), we have the set |x − a| = t, which can be written as ϕ(x, a, t) =

x − a = t ∨ a − x = t. Then, using notation from the first problem, we can define eϕ(x, y, t). For a

given choice of y and t, eϕ(x, y, t) picks out a unique element such that |x− y| = t, if it exists. The set

eϕ(X, a, t) is nonempty for some interval near 0, so we can define ψ(y) = ∃xeϕ(x, y, t), which defines a

subset of R. Then let ǫ(y) = eψ(y), and Γ(y, t) be the unique x such that eϕ(x, y, t).

6.1.15.7. Given a map f : A → Rn, A ⊆ Rm, we call f locally bounded if each point a ∈ A has a

neighborhood U in A such that f(U) is bounded. Let A ⊆ Rm be definable and f : A→ Rn definable.

Prove the following equivalence:

f is continuous ↔ f is locally bounded and Γ(f) is closed in A×Rn

.

It is clear that if f is continuous, it is locally bounded. Moreover, if f is continuous, then take

(a, b) ∈ cl(Γ(f)). We can find, for any ǫ > 0, U containing a such that if a′ ∈ U , |(a, b)−(a′, f(a′))| < ǫ.

But we can also find V containing a such that if a′ ∈ V , |(a, f(a))− (a′, f(a′))| < ǫ (since we are using

the supnorm, V is just the usual open set guaranteed by continuity intersected with an ǫ-box around

a). Thus, for any ǫ we can get that |b− f(a)| < 2ǫ, and thus that b = f(a), so Γ(f) is closed.

For the converse, suppose f is not continuous at a ∈ A. Let ǫ > 0 be a counterexample to continuity.

Thus, for any open U with a ∈ U , we can find a′ ∈ U with |f(a) − f(a′)| > ǫ. Assume f is locally

bounded, so fix V open and bounded, a ∈ V , such that f(V ) is bounded. By definable choice, for

each t > 0, we can find such an a′ in the box B(t) ⊂ Rm, centered at a with sides of length t. Let

c be such that B(c) ⊆ V . Then we have a definable curve γ : (0, c) → B(c) with the properties

γ(t) ∈ B(t) and |f(γ(t)) − f(a)| > ǫ. Now consider the curve γ′ : (0, c) → B(c) × f(B(c)) defined by

γ′(t) = (γ(t), f(γ(t)). Clearly γ(t) goes to a, but clearly f(γ(t)) does not go to f(a), so γ′(t) cannot go

to (a, f(a)), and so its limit is in fact not in Γ(f)∩ cl(V, f(V )), if the limit exists. If Γ(f) were closed,

then γ′ would have a limit in Γ(f) ∩ cl(V, f(V )) as t → 0, since Γ(f) ∩ cl(V, f(V )) contains the image

of γ′ and would be closed and bounded. Since this is not true, Γ(f) cannot be closed.

6.1.15.8. Consider the o-minimal model-theoretic structure (R, <) and the set

X :=
{

(x, y) ∈ R
2 | 0 < x < 1, 0 < y < 2

}

,

which is definable in (R, <) using the constants 0, 1, 2. Note taht (1, 2) ∈ cl(X) and show that there is

no subset Y of X such that Y is definable in (R, <) using constants, dim(Y ) = 1 and (1, 2) ∈ cl(Y ).

By elimination of quantifiers for dense linear orders, we have that Y must be defined by some

quantifier-free formula ϕ(x, y, ā), with ā some constants from R, and consists of a disjunction of order-

ings of x, y, ā, of the form a1 < x = y < a5 (or x < a2 < y = a3, etc.) Since Y is 1-dimensional, it is

easy to see that every such ordering must have either x = ai or y = ai for some i. Thus, geometrically,
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Y is the finite union of points and horizontal and vertical lines. Since it is a finite union, we can

take the closure of each of these components individually. The closures of the points are the points

themselves, and since Y ⊆ X , they cannot include (1, 2). The closure of a horizontal or vertical line

is the line along with the endpoints, which necessarily have one coordinate the same as the points on

the line. Since no horizontal or vertical line contained in X can have x-coordinate 1 or y-coordinate 2,

the endpoints cannot either, and so (1, 2) is not in the closure of any of these lines, and hence not in

cl(Y ).

6.2.5.1. Assume (R,<,S) expands an ordered field. Show that then (2.4) holds even without the

assumption that f is locally bounded. (2.4 states: Let S ⊂ Rm+n be definable, f : S → Rk a locally

bounded definable map, and A ⊆ Rm a definable set such that for all a ∈ A the map fa : Sa → Rk is

continuous, where fa(y) := f(a, y). Then there is a partition of A into definable subsets A1, . . . , AM

such that each restriction

f |S ∩ (Ai ×Rn) : S ∩ (Ai ×Rn) → Rk

is continuous.)

We assume A = πS, since if not, redefine S. We need to show that we can partition πS so that f

is locally bounded on the restrictions.

Define s : S × R → R by s(a, r) = sup{|f(x)| | x ∈ S ∧ πx = πa ∧ |x − a| < r}. Define h : S → R

by h(a) = min(sup{r/2 | s(a, r) is defined}, 1). f is fiberwise continuous, so s(a, r) is defined on some

interval near 0, so h is defined on all of S. Define g : S → R by g(a) = s(a, h(a)). Take a decomposition,

D, of Rm+n which makes g and h continuous.

Let C ∈ D be a cell with C ⊆ S. Let C′ = cl(S)∩ (πC ×Rn). We wish to show that f |C′ is locally

bounded. Choose any a ∈ C. Take a box, B, containing a and small enough that in every “open”

coordinate of C, B is contained in C. In other words, if C were made open by deleting all equality

constraints in its cell definition, we would have cl(B) ⊆ C. Note that cl(B) ∩ C is closed. Define the

set W = {w | ∃c ∈ cl(B) ∩ C(πw = πc ∧ |w − c| < h(c))}. W contains an open set in C ′. (See below

for argument.) Since g is continuous on C, g is continuous on cl(B) ∩C, and since cl(B) ∩C is closed

and bounded, g attains a maximum on it, which means that |f | attains a maximum on W . Then in a

neighborhood of a in C′, f is bounded.

We construct a cell open in C′, U , such that U ⊆W . Begin with πB ∩ πC. For each b ∈ πB ∩ πC,

there is a y ∈ Rn such that (b, y) ∈ Cb. So e(Cb) is defined for every b ∈ πB ∩ πC and gives some

c ∈ C, where e is the definable choice function. Then for coordinates xm+1 to xm+n, the equations for

U are e(Cb)j − h(e(Cb)) < xj < e(Cb)j + h(e(Cb)). This cell is clearly open in C′, and for each u ∈ U ,

|u− e(Cπu)| < h(e(Cπu)), so u ∈W .

6.2.5.2. Assume (R,<,S) expands an ordered field. Let S ⊆ Rm+n be definable, f : S → Rk a

definable map, and A ⊆ Rm a definable set such that f |S ∩ (A × Rn) is injective and fa : Sa → Rk

16



is a homeomorphism from Sa onto fa(Sa) for all a ∈ A. Show that there is a partition of A into

definable subsets A1, . . . , AM such that each restriction f |S ∩ (Ai × Rn) : S ∩ (Ai × Rn) → Rk is a

homeomorphism from S ∩ (Ai ×Rn) onto f (S ∩ (Ai ×Rn)).

Denote f−1 by p. Define s : f(S) × R → R by s(a, r) = sup{|p(x)| | x ∈ f(S) ∧ πp(x) =

πp(a) ∧ |x − a| < r}. Define h : f(S) → R by h(a) = min(sup{r | s(a, r) is defined}, 1). p is

fiberwise continuous, so s(a, r) is defined on some interval near 0, so h is defined on all of f(S). Define

g : f(S) → R by g(a) = s(a, h(a)). Take a decomposition of Rk which partitions f(S) and makes g

and h continuous, D1. Map the cells in D1 which are also in f(S) to Rm+n using p, and decompose

Rm+n, partitioning these cells, with D, such that for C ∈ D, C ⊆ S, f |S ∩ (πC × Rn) is continuous.

All we need to show is that p is locally bounded on the images of these sets, since the graph of p is

just a permutation of the graph of f , and is therefore closed.

Let C ∈ D be a cell with C ⊆ S. Let C′ = cl(S) ∩ (πC × Rn). We wish to show that p|f(C′)

is locally bounded. Choose any a ∈ f(C). Take a box, B, containing p(a) and small enough that

in every “open” coordinate of C, B is contained in C. Note that cl(B) ∩ C is closed. Define the set

W = {w | ∃c ∈ f(cl(B)∩C)(πp(w) = πp(c)∧ |w− c| < h(c))}. W contains an open set in f(C ′). Since

g is continuous on f(C) (as f(C) ⊆ C1, for some C1 ∈ D1), g is continuous on f(cl(B) ∩C), and since

cl(B)∩C is closed and bounded, f(cl(B)∩C) is also closed and bounded. Thus, g attains a maximum

on it, which means that |p| attains a maximum on W . Then in a neighborhood of a in f(C ′), p is

bounded, so p is locally bounded on f(C′).

6.3.9.1. Show that in the model-theoretic structure (R, <, 0, 1, 2) the definable set {(x, y) | 0 < x < 1, 0 < y < 2}∪

{(1, 2)} is definably connected but not definably path connected.

Denote the set by X . As shown in problem 6.1.15.8, there is no definable path to (1, 2) from any

point in the rest of X , so X is not definably path connected. However, X is definably connected:

suppose U and V are open sets partitioning X . Since the rectangle is certainly definably connected,

either U or V must contain the whole rectangle. But then the other one must be just (1, 2) if it is

non-empty. But {(1, 2)} is not open in X , since any open set containing {(1, 2)} must also intersect

the rectangle. So the other set is empty, and thus X is definably connected.

6.4.8.1. Let f : X → Y be a definably proper map. (This includes the assumption that X and Y are

definable sets and f is definable and continuous.) Show that if A ⊆ X is definable and closed in X , then

f(A) is closed in Y . Show that if f ′ : X ′ → Y ′ is a definably proper map, then f×f ′ : X×X ′ → Y ×Y ′

is definably proper. Show that if g : Y → Z is definably proper, then g ◦f : X → Z is definably proper.

For the first claim, let y ∈ cl(f(A)). Then for each open box B(t) with length t containing y, we can

find a ∈ A such that f(a) ∈ B(t). Using definable choice, we can then make a map γ : (0, c) → A (for

some c > 0), with f(γ(t)) ∈ B(t). f(γ) is completable in Y , with completion y. Thus it is completable

in X , but since A is closed, its completion is in A, and it is clear that this completion’s image is y, so
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y ∈ f(A), and so f(A) is closed.

For the second claim, let A be a closed bounded subset of Y × Y ′. Let A1 = {y ∈ Y | ∃y′((y, y′) ∈

A)}, and A2 the corresponding set for Y ′. Consider B = (f × f ′)−1(A). Let B1 and B2 be the similar

sets for X and X ′. B is clearly bounded, since B1 = f−1(A1) and B2 = f ′−1
(A2) must be, since A1

and A2 are closed and bounded. Since f and f ′ are continuous, their cartesian product is as well, and

thus the inverse image of a closed set is closed, so B is closed and bounded.

For the third claim, if L ⊆ Z is closed and bounded, then K = g−1(L) is closed and bounded, so

f−1(K) is closed and bounded, so (f ◦ g)−1(L) = f−1(g−1(L)) = f−1(K) is closed and bounded.

6.4.8.2*. Let (R,<,S′) be an o-minimal structure with S ⊆ S′ and let f : X → Y be a definable

continuous map between definable sets X and Y in Rm and Rn, where “definable” is taken in the sense

of S. Assume also that Y is locally closed in Rn. Show f is definably proper with respect to (R,<,S)

if and only if f is definably proper with respect to (R,<,S ′).

The reverse direction is trivial. In the forward direction, let K ⊆ Y be closed and bounded, with

K ∈ S′ \ S. f−1(K) is certainly closed, so the question is whether it is bounded. But if K is bounded,

we can take a box which contains it, intersect it with Y , and take the closure to get a set definable in

S, containing K, and closed and bounded. Then its inverse image will be bounded, and so K’s will be

as well.

6.4.8.3*. Let f : X → Y be a definable continuous map between definable sets X ⊆ R
m and Y ⊆ R

n.

Show that f is proper if and only if f is definably proper.

First, the reverse direction. By the first problem f(A) is closed for any definable closed A. Since

any closed B is the intersection of definable closed B’s, and the images are all closed, f(B) will be

closed. {y} is closed and bounded, so f−1({y}) is closed and bounded, and thus compact.

In the forward direction, Bourbaki has apparently proved that if f is proper, the inverse image of

a compact set is compact, which is more than we need.

7.2.12.1. (L’Hôpital’s rule) Let I be an interval and f, g : I → R definable functions, and let a be one of

the endpoints of the interval, possibly a = +∞ or a = −∞. Suppose that g′(x) 6= 0 for all x ∈ I in some

neighborhood of a, and that limx→a f(x) = limx→a g(x) = 0, or limx→a |f(x)| = limx→a |g(x)| = +∞.

Then

lim
x→a

(f(x)/g(x)) = lim
x→a

(f ′(x)/g′(x)) .

(Note that both limits exist in R∞, by Chapter 3, (1.6).)

(From Rudin) Assume a is the left endpoint (the right endpoint case is precisely analogous). Let

the right-hand limit be A. If possible, choose a real q such that q > A, and choose r, A < r < q. We

show the left-hand limit must be less than q. A similar argument will show that if q′ < A, the left-hand

limit is greater than q′. Thus, the limit exists and is equal to A (when A = +∞, there is no q, but we
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can choose q′ any real number, showing the limit is +∞). Since the right-hand limit is A, we can find

c ∈ I such that a < x < c implies f ′(x)/g′(x) < r. If a < x < y < c, then by the generalized mean

value theorem (Rudin 5.9), we can find t ∈ (x, y) such that

f(x) − f(y)

g(x) − g(y)
=
f ′(t)

g′(t)
< r.

Now consider the different possibilities for limx→a |f(x)| = limx→a |g(x)|. If this limit is 0, then

letting x→ a in the above expression, we see that f(y)/g(y) ≤ r < q, for a < y < c.

If the limits of |f | and |g| are ∞, then choose c1 ∈ (a, y) such that g(x) > g(y) and g(x) > 0 for

x ∈ (a, c1). Multiplying the above equation by [g(x) − g(y)]/g(x), we have

f(x) − f(y)

g(x)
< r

g(x) − g(y)

g(x)

f(x)

g(x)
< r − r

g(y)

g(x)
+
f(y)

g(x)
.

As we let x→ a, since the left-hand side goes to r, this shows that for some c2 ∈ (a, c1), f(x)/g(x) <

q for x ∈ (a, c2).

Thus, in any case, we have that the left-hand limit is less than q. A precisely similar argument for

q′ < A shows that it is greater than q′, and so is A. The case where a is a right endpoint is analogous.

7.2.12.2. (Taylor’s formula) Suppose the definable function f : I → R is (n + 1) times differentiable

on the interval I, and let a, b ∈ I, a < b. Then

f(b) = f(a) + f ′(a)(b − a) +
f (2)(a)

2!
(b− a)2 + · · · +

f (n)(a)

n!
(b − a)n +

f (n+1)(z)

(n+ 1)!
(b− a)n+1

for some z with a < z < b.

(From Rudin) Let the polynomial above be P (b). Let M be defined by f(b) = P (b)+M(b− a)n+1,

and let g(t) = f(t)−P (t)−M(t−a)n+1. We must show that (n+1)!M = f (n+1)(z) for some z ∈ (a, b).

Differentiating this expression for g, we get g(n+1)(t) = f (n+1)(t) − (n + 1)!M , for t ∈ (a, b). So we

will be done if we know that g(n+1)(z) = 0 for some z ∈ (a, b). Since P (k)(a) = f (k)(a) for k ≤ n,

we have g(a) = g′(a) = . . . = g(n)(a) = 0. Our choice of M means that g(b) = 0, so there is some

z1 ∈ (a, b) such that g′(z1) = 0 by the mean value theorem, and then since g′(a) = 0, again there is

some z2 ∈ (a, z1) such that g′′(z2) = 0, and so on. This will give a zn+1 with g(n+1)(zn+1) = 0, which

is the desired z.

7.3.3.1. Show that the remarks at the end of (3.1) go through with “C1” replaced by “Ck.” [The

remarks note that inclusion maps are C1, that compositions preserve C1, and components are C1 iff

the function is too.]

The identity map is infinitely differentiable, the kth derivative of a composition involves only kth

derivatives of each function, and the kth derivative of a function is defined componentwise.
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7.3.3.2. State and prove the Ck-Cell Decomposition Theorem, k ≥ 1.

The statement is the same as for the C1 case (Theorem 7.3.2), with Ck replacing C1. Note that,

by first decomposing using the C1 version of the theorem, we can consider only cells. So Ikm can just

say that, given C, there is a decomposition partitioning C such that each cell is Ck, and IIkm can

consider functions just on cells. For the proof, we go by induction on k and the dimension of the cells

we are working with. We show Ik+1
m+1 given Ik+1

m , Ikm+1, and IIk+1
m . First, using Ikm+1, decompose C

into Ck-cells. Each function used to define these Ck cells is defined on (at most Rm). Thus, by IIk+1
m ,

there is a decomposition partitioning these cells such that all of these functions are Ck+1 and the cells

they are defined on are Ck+1, and hence this refinement of the original decomposition is Ck+1.

Now we show IIk+1
m+1 given I. We have a function f on a cell, C. By IIkm+1 we can find a Ck-

partition C so that f is Ck on each cell, so we may assume WLOG that f is Ck on a Ck-cell, C.

Consider f ′. By the C1 case, we can find a C1 partition of C such that f ′ is C1 on each cell. Then

f is Ck+1 on each cell. It remains to show that each C1-cell can be partitioned into Ck+1-cells. But

the functions used to define each C1 cell are on Rm, so by IIk+1
m , we can partition the cells so that the

functions are Ck+1 on Ck+1-cells, which finishes the proof.

7.4.3.1. Let A ⊆ Rm+1 be a definable set of dimension ≤ m. Call a unit vector u ∈ Sm ⊆ Rm+1

an asymptotic direction for A if for each ǫ > 0 and r > 0, there is a point x ∈ X with ||x|| > r and

||(x/||x||) − u|| < ǫ. Show that the (definable) set of asymptotic directions for A is of dimension < m.

(In particular, not every unit vector is an asymptotic direction for A.)

Assume the dimension of the set of asymptotic directions is m. Then there is some open set in Rm,

U , containing only asymptotic directions. Let U be bounded. For each x ∈ U , if x is a good direction

for A, then there is some upper bound r such that if t > r, tx /∈ A. Let R be the maximum value of

r on cl(U). The set {x/||x|| | x ∈ A, ||x|| > R} is dense in U , so there is some open set, V , entirely

contained in it. By the good directions lemma, there is some point, v ∈ V , which is a good direction

for A, so tv /∈ A for t > R. But since v ∈ V , there is some x ∈ A, ||x|| > R, such that v = x/||x||.

Contradiction.

7.4.3.2. Let A ⊆ Rm be definable and dimA ≤ k < m. Show that there is an (m − k)-dimensional

linear subspace L of Rm all of whose translates v + L (v ∈ Rm) meet A in only finitely many points.

(Hint: proceed by induction on m− k.)

The case m − k = 1 is the theorem. In the case m − k = n + 1, first apply the theorem to get

a line, L1, all of whose translates meet A at finitely many points. Then consider A + L1, that is

{x | x = l+ a, l ∈ L1, a ∈ A}. This has dimension dim(A) + 1 ≤ k+ 1, so by induction, there is an L′,

m− k − 1-dimensional linear subspace whose translates intersect A+ L1 in only finitely many points,

and thus L = L1 + L′ is an m − k-dimensional linear subspace whose translates intersect A in only

finitely many points.
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7.4.3.3. In this exercise, assume that R is an ordered field, not necessarily real closed.

Let A ⊆ Rm be semilinear with dim(A) < m. Show that A is contained in a finite union of affine

subspaces of Rm of dimension < m, and derive that there is a good direction for A, that is, a nonzero

vector u ∈ Rm such that each line p+Ru (p ∈ Rm) intersects A in only finitely many points.

Removing the inequalities from the definition of A, we have that A will be contained in a finite

union of affine subspaces. Since inequalities correspond to open sets and therefore do not decrease

the dimension, these affine subspaces will all have dimension < m. Any vector not in the span of the

vectors giving the affine subspace will hit the subspace at only finitely many (in fact, 0 or 1) points for

any translation. We can find a vector not in the span of any of the subspaces’ vectors by induction.

Let A1, . . . , An+1 be affine subspaces, with Ai = Vi +wi, for Vi a vector subspace and wi some vector.

Suppose we have found v not in V1, . . . , Vn. Assume v ∈ Vn+1. Since dim(Vn+1) < m, there is u /∈ Vn+1.

Then v+ tu /∈ Vn+1 for any t ∈ R. For each Vi, i ≤ n, if u ∈ Vi, then v+ tu will not be in Vi. If u /∈ Vi,

then simple linear algebra shows that v + tu ∈ Vi for only finitely many values of t. Thus, we can find

t such that v + tu /∈ Vi for i ≤ n+ 1, and this vector will be a good direction for A.

4.1.17.2. Let A ⊆ Rm be a definable set and a ∈ Rm. Show there is a number d ∈ {−∞, 0, . . . ,dimA}

such that dim(U ∩A) = d for all sufficiently small definable neighborhoods U of a in Rm, that is, for

all definable neighborhoods of a in Rm that are contained in some fixed definable neighborhood of a

in Rm.

Let D be a decomposition partitioning A. Let E = {D ∈ D | a ∈ cl(D)}. Then I claim that

e = max({dim(D) | D ∈ E}) is the required constant. Let U be any open set containing a. Then

U∩D 6= ∅ for anyD ∈ E. It is easy to see that, since U contains a box, that dim(U∩D) = dimD. Thus,

for any open U , dim(U ∩A) is certainly at least e. As well, dim(U ∩A) = max({dim(U ∩D) | D ∈ D}).

Taking V open such that V ∩D = ∅ for D /∈ E, we see that for U ⊆ V , dimU ∩A ≤ e, and thus = e.

4.1.17.3*. Show that if A is a d-dimensional cell, then dima(A) = d for all a ∈ cl(A).

This follows from the previous problem by taking D to be {A}.

4.1.17.4. Let A ⊆ Rm be a definable set and d ∈ {0, . . . ,dimA}. Show that the set {a ∈ Rm |

dima(A) ≥ d} is a definable closed subset of cl(A). Show also that ifA 6= ∅, then dim ({a ∈ cl(A) | dima(A) < d}) <

d.

Let D be a cell decomposition of A (note D is definable). By the arguments of 17.2, an element

x is in the set defined by dimx(A) = d if and only if x is in the closure of D for some D in D with

dim(D) = d. Since there are only finitely many D ∈ D, and each D is definable, along with its

dimension, this set is definable.

For the second part, note that the desired set consists of
⋃

{cl(D) | dim(D) < d}, and since cl

preserves dimension, and it is a finite union, the union has dimension less than d.
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5.2.14.1. Finish the proof of (2.12) by showing that V (pos(L)) ≥ m+ 1.

Choose f1, . . . , fm, and a1, . . . , am ∈ X , fi(aj) = 0 for i 6= j, fi(aj) = 1 for i = j. (These can be

chosen by basic linear algebra.) Then for u ⊆ {1, . . . ,m}, let fu = Σiδifi, where δi = 1 if i ∈ u, δi = 0

if i ∈ u. Then pos(fu) = {ai | i ∈ u}.

5.2.14.2. Show that fΦ∨Ψ ≤ fΦ · fΨ, and derive that fΦ∧Ψ ≤ fΦ · fΨ.

Note that (Φ ∨ Ψ)x = Φx ∪ Ψx. For any x(1), . . . , x(n) ∈ X , B((Φ ∨ Ψ)x(1), . . . , (Φ ∨ Ψ)x(1)) ⊆

B(Φx(1), . . . ,Φx(n),Ψx(1), . . . ,Ψx(n)). But the second boolean algebra is generated by the atoms in the

boolean algebras for Φ and Ψ. There are at most pfΦ(n) and pfΨ(n) atoms in those, respectively.

Thus, the number of atoms in the boolean algebra is the product of these two. The degrees of the

polynomials are fΦ − 1 and fΨ − 1, so their product has degree fΦ + fΨ − 2. Thus, the number of

atoms is given by a polynomial of degree ≤ fΦ + fΨ − 2, which will be less than pfΦ+fΨ−1(n), so

fΦ∨Ψ ≤ fΦ + fΨ − 1 ≤ fΦ · fΨ.

Using the fact that f¬Φ = fΦ, it is easy to show that fΦ∧Ψ ≤ fΦ · fΨ.

5.2.14.3. Show that if Φ and Ψ are dependent, then Φ ∨ Ψ and Φ ∧ Ψ are dependent.

Trivial from the previous problem.

5.2.14.4. Derive from the previous two exercises and proposition (2.12) that every semi-algebraic

relation Φ ⊆ R
M × R

N (M,N > 0) is dependent.

Given any Φ, let f1(X1, . . . , XM , Y1, . . . , YN ), . . . , fn(X1, . . . , XM , Y1, . . . , YN ) be the polynomials

used to define the set. Let fi have degree mi in the Yj ’s. Then the set of positive values of polynomials

of degree ≤ mi has finite VC-index, by proposition (2.12). So {pos(fi(a, Y1, . . . , YN )) | a ∈ R
M} has

finite VC-index. Φ is the result of a finite boolean combination of these sets, and so by the above

problems, is dependent.

6.1.15.1. Show that the definable set of representatives indicated in the proof of (1.2) is definable

in the model-theoretic structure (R,<, 1,+, E). (Recall that this set of representatives is given by

T := {e(A) | A is an equivalence class}.)

Note that e(X), for X = ϕ(R, y), is given by a formula which uses ϕ(x, y). (It is

ϕ(x, y)

∧ (∀z < x(¬ϕ(z, y))

∨ (∀z(ϕ(z, y) → ∃u < z(ϕ(u, y)))

∧ ((x = 0 ∧ ∀z∃u < z,w > z(ϕ(u, y) ∧ ϕ(w, y)))

∨ (∃z(∀u < z(ϕ(u, y)) ∧ ¬ϕ(z, y) ∧ x = z − 1))

∨ (∃z(∀u > z(ϕ(u, y)) ∧ ¬ϕ(z, y) ∧ x = z + 1))

∨ (∃z1, z2 > z1(∀w < z1(¬ϕ(w, y)) ∧ ∀z1 < u < z2(ϕ(u, y)) ∧ ¬ϕ(z2, y) ∧ x+ x = z1 + z2)))))
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.)

Let it be eϕ(x, y). Let ϕ(x, y) = E(x, y). Then T can be defined as ∃y(eϕ(x, y)).

6.1.15.2. Show that E has only finitely many equivalence classes of dimension dim(X), and that each

of them is definable in the model-theoretic structure (R,<, 1,+, E).

Consider the set S = eϕ(x, y) ⊂ X ×X , as defined above. By a result on dimension (proposition

4.1.5), the fibers Sx which have dimension dim(X) form a definable set, definable from S, and thus

definable in this structure. This set has to have dimension 0, from another part of the same result.

Thus, it is finite. Since each equivalence class with dimension dim(X) is mapped to a distinct point in

this set, there can be only finitely many such classes.

6.1.15.3. Suppose all equivalence classes of E have the same Euler characteristic e. Show that then

the Euler characteristic of X is a multiple of e. (In particular, this shows that for e > 1 there is no

definable equivalence relation on Rm all of whose equivalence classes have exactly e elements.)

Consider the definable injective map f : X → X ×X given by a → (eϕ(x, a), a). Then the Euler

characteristic of X is equal to the Euler characteristic of f(X). The projection map has fibers with

Euler characteristic e. and so by a previous result (corollary 4.2.11), the Euler characteristic of f(X)

is eE(π(eϕ(x, y))), and so it is a multiple of e.

6.1.15.4. (Uniform continuity) Let X ⊆ Rm be a closed and bounded definable set and f : X → Rn

a continuous definable map. Show that there is for each ǫ > 0 a δ > 0 such that whenever |x− y| < δ,

x, y ∈ X , we have |f(x) − f(y)| < ǫ.

Suppose not, for some ǫ. Then for each t > 0, there is some x ∈ X such that ∃y(|x − y| <

t∧ |f(x)− f(y)| > ǫ). Through definable curve selection, we can choose a curve, γ : (0, a) → X , which

picks out such an x for each t ∈ (0, a) and is continuous. limt→0 γ(t) exists, since each component of

γ is eventually monotonic, and thus has a limit, since X is bounded. Since X is closed, the limit is in

X . Then at this point, f will not be continuous. Since this is impossible, our assumption is false, so f

is uniformly continuous.

6.1.15.5. (Fixed point theorem) Let X be a nonempty closed bounded definable subset of Rm and

f : X → X a definable map such that |f(x) − f(y)| < |x − y| for all distinct points x, y ∈ X . Show

that f has a unique fixed point.

Define γ : (0, 1) → X by |f(γ(t)) − γ(t)| = t (using definable choice). Clearly the domain of γ

cannot have a minimum element, since |f(f(x)) − f(x)| < |f(x) − x|. So assume (0, ǫ] /∈ dom(γ) for

some ǫ > 0. Then define γ′(t) = γ(t+ ǫ), and we have a map which is defined in a neighborhood of 0.

Thus, since X is closed and bounded, the limit of γ′ is in X , and so there is an element of X such that

|f(x) − x| = ǫ, which contradicts our assumption about ǫ, so actually γ is defined on a neighborhood

of 0, and so its limit, which is in X , is a fixed point.
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6.1.15.6. (Uniform curve selection) LetX ⊆ Rm be definable. Show there are definable maps ǫ : ∂X →

(0,∞) and Γ : ∂X × (0, ǫ) → X such that for each a ∈ ∂X the function t → Γ(a, t) : (0, ǫ(a)) → X is

continuous, injective and satisfies limt→0 Γ(a, t) = a.

For each a ∈ ∂X and t ∈ (0,∞), we have the set |x − a| = t, which can be written as ϕ(x, a, t) =

x − a = t ∨ a − x = t. Then, using notation from the first problem, we can define eϕ(x, y, t). For a

given choice of y and t, eϕ(x, y, t) picks out a unique element such that |x− y| = t, if it exists. The set

eϕ(X, a, t) is nonempty for some interval near 0, so we can define ψ(y) = ∃xeϕ(x, y, t), which defines a

subset of R. Then let ǫ(y) = eψ(y), and Γ(y, t) be the unique x such that eϕ(x, y, t).

6.1.15.7. Given a map f : A → Rn, A ⊆ Rm, we call f locally bounded if each point a ∈ A has a

neighborhood U in A such that f(U) is bounded. Let A ⊆ Rm be definable and f : A→ Rn definable.

Prove the following equivalence:

f is continuous ↔ f is locally bounded and Γ(f) is closed in A×Rn

.

It is clear that if f is continuous, it is locally bounded. Moreover, if f is continuous, then take

(a, b) ∈ cl(Γ(f)). We can find, for any ǫ > 0, U containing a such that if a′ ∈ U , |(a, b)−(a′, f(a′))| < ǫ.

But we can also find V containing a such that if a′ ∈ V , |(a, f(a))− (a′, f(a′))| < ǫ (since we are using

the supnorm, V is just the usual open set guaranteed by continuity intersected with an ǫ-box around

a). Thus, for any ǫ we can get that |b− f(a)| < 2ǫ, and thus that b = f(a), so Γ(f) is closed.

For the converse, suppose f is not continuous at a ∈ A. Let ǫ > 0 be a counterexample to continuity.

Thus, for any open U with a ∈ U , we can find a′ ∈ U with |f(a) − f(a′)| > ǫ. Assume f is locally

bounded, so fix V open and bounded, a ∈ V , such that f(V ) is bounded. By definable choice, for

each t > 0, we can find such an a′ in the box B(t) ⊂ Rm, centered at a with sides of length t. Let

c be such that B(c) ⊆ V . Then we have a definable curve γ : (0, c) → B(c) with the properties

γ(t) ∈ B(t) and |f(γ(t)) − f(a)| > ǫ. Now consider the curve γ′ : (0, c) → B(c) × f(B(c)) defined by

γ′(t) = (γ(t), f(γ(t)). Clearly γ(t) goes to a, but clearly f(γ(t)) does not go to f(a), so γ′(t) cannot go

to (a, f(a)), and so its limit is in fact not in Γ(f)∩ cl(V, f(V )), if the limit exists. If Γ(f) were closed,

then γ′ would have a limit in Γ(f) ∩ cl(V, f(V )) as t → 0, since Γ(f) ∩ cl(V, f(V )) contains the image

of γ′ and would be closed and bounded. Since this is not true, Γ(f) cannot be closed.

6.1.15.8. Consider the o-minimal model-theoretic structure (R, <) and the set

X :=
{

(x, y) ∈ R
2 | 0 < x < 1, 0 < y < 2

}

,

which is definable in (R, <) using the constants 0, 1, 2. Note taht (1, 2) ∈ cl(X) and show that there is

no subset Y of X such that Y is definable in (R, <) using constants, dim(Y ) = 1 and (1, 2) ∈ cl(Y ).
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By elimination of quantifiers for dense linear orders, we have that Y must be defined by some

quantifier-free formula ϕ(x, y, ā), with ā some constants from R, and consists of a disjunction of order-

ings of x, y, ā, of the form a1 < x = y < a5 (or x < a2 < y = a3, etc.) Since Y is 1-dimensional, it is

easy to see that every such ordering must have either x = ai or y = ai for some i. Thus, geometrically,

Y is the finite union of points and horizontal and vertical lines. Since it is a finite union, we can

take the closure of each of these components individually. The closures of the points are the points

themselves, and since Y ⊆ X , they cannot include (1, 2). The closure of a horizontal or vertical line

is the line along with the endpoints, which necessarily have one coordinate the same as the points on

the line. Since no horizontal or vertical line contained in X can have x-coordinate 1 or y-coordinate 2,

the endpoints cannot either, and so (1, 2) is not in the closure of any of these lines, and hence not in

cl(Y ).

6.2.5.1. Assume (R,<,S) expands an ordered field. Show that then (2.4) holds even without the

assumption that f is locally bounded. (2.4 states: Let S ⊂ Rm+n be definable, f : S → Rk a locally

bounded definable map, and A ⊆ Rm a definable set such that for all a ∈ A the map fa : Sa → Rk is

continuous, where fa(y) := f(a, y). Then there is a partition of A into definable subsets A1, . . . , AM

such that each restriction

f |S ∩ (Ai ×Rn) : S ∩ (Ai ×Rn) → Rk

is continuous.)

We show the result for f : S → R, which suffices, because if we make each component of a map

continuous, the map is continuous. We assume A = πS, since if not, redefine S. Go by induction on

m.

Using the regular cell decomposition theorem, we can find a decomposition, D1, of Rm+n such

that for each C ∈ D, f |C is continuous and monotonic or constant in every variable. If C is an

(i1, . . . , im+n)-cell, in van den Dries’ notation, let GC = {j | ij = 1}. Define a ∼C b to be ai = bi for

i ∈ GC (the C will be dropped when it is clear from context). Define EC to be {(x1, . . . , xm+n) | ∃a ∈

C(a ∼ x ∧ |a− x| = 1)}. Note that the a in the definition is uniquely defined by the first clause, and

note that EC is not in the closure of C or vice versa. Let X be the set of points at which f is not

locally bounded (X is definable). Now take a decomposition D of Rm+n which partitions D1 and X

and each EC , and is also a stratification.

Let C ∈ D be a cell with C ⊆ X . Let C′ = πC × Rn. If πC is not open in Rm, we are done

by the canonical projection and induction, so assume it is. We will derive a contradiction from this.

Note that by this assumption, {1, . . . ,m} ⊆ GC . Choose any a ∈ C. f is continuous on C, so

there exists a box B1 containing a such that for b ∈ B1 ∩ C, |f(b) − f(a)| < 1. Let B2 be a box

containing a such that if j ∈ GC , and (b1, . . . , bj , . . . , bm+n) ∈ B2 ∩ C, then there exists b′j such

that (b1, . . . , b
′

j , . . . , bm+n) ∈ C \ B2 (on those coordinates where C is open, B2 is “inside” C). Let
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U = {x | ∃b ∈ C(x ∼ b ∧ |x − b|) < 1}. U is easily seen to be an open cell. Let V be a neighborhood

of a containing only points from C or cells which are connected to C (this is possible by the definition

of cells connecting to each other). Let B′ be a box contained in B1 ∩ B2 ∩ U ∩ V . f |C′ is not locally

bounded, since C′ is open in Rm+n, so for any T > 0, there exists bT ∈ B′ with |f(bT )| > T . Since

there are only finitely many cells intersecting B′, we can find some cell F with infinitely many such

points. Let B = B′ ∩ F . Consider any b = (b1, . . . , bm+n) ∈ B. Since b ∈ U , there is b′ ∈ C such that

b ∼ b′. Let j ∈ GF \GC . We can find a least t > 0 such that bt = (b1, . . . , bj + t, . . . , bm+n) /∈ F . This

is so because F cannot be in EC , since it borders C, and |b− b′| < 1, since b ∈ U , so by increasing t, we

eventually make |bt− b′| = 1, so bt /∈ F . Of course, the minimum necessary may occur before this. We

can also find the greatest s < 0 such that bs /∈ F . By monotonicity of f on xj , along with continuity,

f(bs) and f(bt) bound f(b). (This is the crucial place where πC must be open. If πC were not open,

then j might be less than m, and then f might not be continuous on xj , so we would not be able

to bound f(b).) Since D is a stratification, bs and bt lie in lower-dimension cells than F . Repeating

this procedure with bs and bt, we can continue until we have f(m(b)) < b < f(M(b)), with m(b) and

M(b) lying in cells H(b) and K(b), both in C′, with GH(b) \ GC = GK(b) \ GC = ∅. It may be that

H(b) 6= H(c) for some b, c ∈ B, but if we consider an infinite sequence (not definable) in B, (b1, b2, . . .),

approaching a such that |f(bi)| > i, by passing to an infinite subsequence all bi’s must share the same

H and K.

Fix such an H and K. Since M(b) ∼ b and b ∼ b′, we have that for each M(b), there is a

unique b′ ∈ C with M(b) ∼ b′. Since the bi’s are going to a, the b′i’s must be going to a also. Since

GH \ GC = ∅, the M(b)’s will go to a limit as well (each M(bi)j for j ∈ GC is going to aj , but this

uniquely defines an element in H̄). Let this limit be aH . If aH ∈ H , then construct B3 for H the same

way B2 was constructed for C. On B̄3 ∩H , f is bounded, and since for large enough i every M(bi)

is in B3, {f(M(bi)) | i < ω} is bounded. By a similar argument, if aK ∈ K, {f(m(bi)) | i < ω} is

bounded. Since f(m(bi)) < f(bi) < f(M(bi)) for all i, this is impossible.

Thus, aH /∈ H or aK /∈ K. WLOG, aH /∈ H . Let N be the cell containing aH . Since aH ∈ cl(H)

and D is a stratification, dim(N) < dim(H) ≤ dim(C). This is true for every x ∈ C. For distinct

x, y ∈ C, xH and yH must be distinct for any sequences approaching x and y that we choose, since

x 6∼ y. There are only finitely many cells of dimension less than dim(C), and each point in C is

associated with at least one point in their union, in an injective way. This is clearly impossible. Thus,

our assumption was wrong and πC is not open.

6.2.5.2. Assume (R,<,S) expands an ordered field. Let S ⊆ Rm+n be definable, f : S → Rk a

definable map, and A ⊆ Rm a definable set such that f |S ∩ (A × Rn) is injective and fa : Sa → Rk

is a homeomorphism from Sa onto fa(Sa) for all a ∈ A. Show that there is a partition of A into

definable subsets A1, . . . , AM such that each restriction f |S ∩ (Ai × Rn) : S ∩ (Ai × Rn) → Rk is a

homeomorphism from S ∩ (Ai ×Rn) onto f (S ∩ (Ai ×Rn)).
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We have from the previous problem that we can make f continuous on cells. The question is whether

we can make f−1 continuous. 6.3.9.1. Show that in the model-theoretic structure (R, <, 0, 1, 2) the

definable set {(x, y) | 0 < x < 1, 0 < y < 2} ∪ {(1, 2)} is definably connected but not definably path

connected.

Denote the set by X . As shown in problem 6.1.15.8, there is no definable path to (1, 2) from any

point in the rest of X , so X is not definably path connected. However, X is definably connected:

suppose U and V are open sets partitioning X . Since the rectangle is certainly definably connected,

either U or V must contain the whole rectangle. But then the other one must be just (1, 2) if it is

non-empty. But {(1, 2)} is not open in X , since any open set containing {(1, 2)} must also intersect

the rectangle. So the other set is empty, and thus X is definably connected.

6.4.8.1. Let f : X → Y be a definably proper map. (This includes the assumption that X and Y are

definable sets and f is definable and continuous.) Show that if A ⊆ X is definable and closed in X , then

f(A) is closed in Y . Show that if f ′ : X ′ → Y ′ is a definably proper map, then f×f ′ : X×X ′ → Y ×Y ′

is definably proper. Show that if g : Y → Z is definably proper, then g ◦f : X → Z is definably proper.

For the first claim, let y ∈ cl(f(A)). Then for each open box B(t) with length t containing y, we can

find a ∈ A such that f(a) ∈ B(t). Using definable choice, we can then make a map γ : (0, c) → A (for

some c > 0), with f(γ(t)) ∈ B(t). f(γ) is completable in Y , with completion y. Thus it is completable

in X , but since A is closed, its completion is in A, and it is clear that this completion’s image is y, so

y ∈ f(A), and so f(A) is closed.

For the second claim, let A be a closed bounded subset of Y × Y ′. Let A1 = {y ∈ Y | ∃y′((y, y′) ∈

A)}, and A2 the corresponding set for Y ′. Consider B = (f × f ′)−1(A). Let B1 and B2 be the similar

sets for X and X ′. B is clearly bounded, since B1 = f−1(A1) and B2 = f ′−1
(A2) must be, since A1

and A2 are closed and bounded. Since f and f ′ are continuous, their cartesian product is as well, and

thus the inverse image of a closed set is closed, so B is closed and bounded.

For the third claim, if L ⊆ Z is closed and bounded, then K = g−1(L) is closed and bounded, so

f−1(K) is closed and bounded, so (f ◦ g)−1(L) = f−1(g−1(L)) = f−1(K) is closed and bounded.

6.4.8.2*. Let (R,<,S′) be an o-minimal structure with S ⊆ S′ and let f : X → Y be a definable

continuous map between definable sets X and Y in Rm and Rn, where “definable” is taken in the sense

of S. Assume also that Y is locally closed in Rn. Show f is definably proper with respect to (R,<,S)

if and only if f is definably proper with respect to (R,<,S ′).

The reverse direction is trivial. In the forward direction, let K ⊆ Y be closed and bounded, with

K ∈ S′ \ S. f−1(K) is certainly closed, so the question is whether it is bounded. But if K is bounded,

we can take a box which contains it, intersect it with Y , and take the closure to get a set definable in

S, containing K, and closed and bounded. Then its inverse image will be bounded, and so K’s will be

as well.
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6.4.8.3*. Let f : X → Y be a definable continuous map between definable sets X ⊆ R
m and Y ⊆ R

n.

Show that f is proper if and only if f is definably proper.

First, the reverse direction. By the first problem f(A) is closed for any definable closed A. Since

any closed B is the intersection of definable closed B’s, and the images are all closed, f(B) will be

closed. {y} is closed and bounded, so f−1({y}) is closed and bounded, and thus compact.

In the forward direction, Bourbaki has apparently proved that if f is proper, the inverse image of

a compact set is compact, which is more than we need.

7.2.12.1. (L’Hôpital’s rule) Let I be an interval and f, g : I → R definable functions, and let a be one of

the endpoints of the interval, possibly a = +∞ or a = −∞. Suppose that g′(x) 6= 0 for all x ∈ I in some

neighborhood of a, and that limx→a f(x) = limx→a g(x) = 0, or limx→a |f(x)| = limx→a |g(x)| = +∞.

Then

lim
x→a

(f(x)/g(x)) = lim
x→a

(f ′(x)/g′(x)) .

(Note that both limits exist in R∞, by Chapter 3, (1.6).)

(From Rudin) Assume a is the left endpoint (the right endpoint case is precisely analogous). Let

the right-hand limit be A. If possible, choose a real q such that q > A, and choose r, A < r < q. We

show the left-hand limit must be less than q. A similar argument will show that if q′ < A, the left-hand

limit is greater than q′. Thus, the limit exists and is equal to A (when A = +∞, there is no q, but we

can choose q′ any real number, showing the limit is +∞). Since the right-hand limit is A, we can find

c ∈ I such that a < x < c implies f ′(x)/g′(x) < r. If a < x < y < c, then by the generalized mean

value theorem (Rudin 5.9), we can find t ∈ (x, y) such that

f(x) − f(y)

g(x) − g(y)
=
f ′(t)

g′(t)
< r.

Now consider the different possibilities for limx→a |f(x)| = limx→a |g(x)|. If this limit is 0, then

letting x→ a in the above expression, we see that f(y)/g(y) ≤ r < q, for a < y < c.

If the limits of |f | and |g| are ∞, then choose c1 ∈ (a, y) such that g(x) > g(y) and g(x) > 0 for

x ∈ (a, c1). Multiplying the above equation by [g(x) − g(y)]/g(x), we have

f(x) − f(y)

g(x)
< r

g(x) − g(y)

g(x)

f(x)

g(x)
< r − r

g(y)

g(x)
+
f(y)

g(x)
.

As we let x→ a, since the left-hand side goes to r, this shows that for some c2 ∈ (a, c1), f(x)/g(x) <

q for x ∈ (a, c2).

Thus, in any case, we have that the left-hand limit is less than q. A precisely similar argument for

q′ < A shows that it is greater than q′, and so is A. The case where a is a right endpoint is analogous.
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7.2.12.2. (Taylor’s formula) Suppose the definable function f : I → R is (n + 1) times differentiable

on the interval I, and let a, b ∈ I, a < b. Then

f(b) = f(a) + f ′(a)(b − a) +
f (2)(a)

2!
(b− a)2 + · · · +

f (n)(a)

n!
(b − a)n +

f (n+1)(z)

(n+ 1)!
(b− a)n+1

for some z with a < z < b.

(From Rudin) Let the polynomial above be P (b). Let M be defined by f(b) = P (b)+M(b− a)n+1,

and let g(t) = f(t)−P (t)−M(t−a)n+1. We must show that (n+1)!M = f (n+1)(z) for some z ∈ (a, b).

Differentiating this expression for g, we get g(n+1)(t) = f (n+1)(t) − (n + 1)!M , for t ∈ (a, b). So we

will be done if we know that g(n+1)(z) = 0 for some z ∈ (a, b). Since P (k)(a) = f (k)(a) for k ≤ n,

we have g(a) = g′(a) = . . . = g(n)(a) = 0. Our choice of M means that g(b) = 0, so there is some

z1 ∈ (a, b) such that g′(z1) = 0 by the mean value theorem, and then since g′(a) = 0, again there is

some z2 ∈ (a, z1) such that g′′(z2) = 0, and so on. This will give a zn+1 with g(n+1)(zn+1) = 0, which

is the desired z.

7.3.3.1. Show that the remarks at the end of (3.1) go through with “C1” replaced by “Ck.” [The

remarks note that inclusion maps are C1, that compositions preserve C1, and components are C1 iff

the function is too.]

The identity map is infinitely differentiable, the kth derivative of a composition involves only kth

derivatives of each function, and the kth derivative of a function is defined componentwise.

7.3.3.2. State and prove the Ck-Cell Decomposition Theorem, k ≥ 1.

The statement is the same as for the C1 case (Theorem 7.3.2), with Ck replacing C1. Note that,

by first decomposing using the C1 version of the theorem, we can consider only cells. So Ikm can just

say that, given C, there is a decomposition partitioning C such that each cell is Ck, and IIkm can

consider functions just on cells. For the proof, we go by induction on k and the dimension of the cells

we are working with. We show Ik+1
m+1 given Ik+1

m , Ikm+1, and IIk+1
m . First, using Ikm+1, decompose C

into Ck-cells. Each function used to define these Ck cells is defined on (at most Rm). Thus, by IIk+1
m ,

there is a decomposition partitioning these cells such that all of these functions are Ck+1 and the cells

they are defined on are Ck+1, and hence this refinement of the original decomposition is Ck+1.

Now we show IIk+1
m+1 given I. We have a function f on a cell, C. By IIkm+1 we can find a Ck-

partition C so that f is Ck on each cell, so we may assume WLOG that f is Ck on a Ck-cell, C.

Consider f ′. By the C1 case, we can find a C1 partition of C such that f ′ is C1 on each cell. Then

f is Ck+1 on each cell. It remains to show that each C1-cell can be partitioned into Ck+1-cells. But

the functions used to define each C1 cell are on Rm, so by IIk+1
m , we can partition the cells so that the

functions are Ck+1 on Ck+1-cells, which finishes the proof.

7.4.3.1. Let A ⊆ Rm+1 be a definable set of dimension ≤ m. Call a unit vector u ∈ Sm ⊆ Rm+1

an asymptotic direction for A if for each ǫ > 0 and r > 0, there is a point x ∈ X with ||x|| > r and
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||(x/||x||) − u|| < ǫ. Show that the (definable) set of asymptotic directions for A is of dimension < m.

(In particular, not every unit vector is an asymptotic direction for A.)

Assume the dimension of the set of asymptotic directions is m. Then there is some open set in Rm,

U , containing only asymptotic directions. Let U be bounded. For each x ∈ U , if x is a good direction

for A, then there is some upper bound r such that if t > r, tx /∈ A. Let R be the maximum value of

r on cl(U). The set {x/||x|| | x ∈ A, ||x|| > R} is dense in U , so there is some open set, V , entirely

contained in it. By the good directions lemma, there is some point, v ∈ V , which is a good direction

for A, so tv /∈ A for t > R. But since v ∈ V , there is some x ∈ A, ||x|| > R, such that v = x/||x||.

Contradiction.

7.4.3.2. Let A ⊆ Rm be definable and dimA ≤ k < m. Show that there is an (m − k)-dimensional

linear subspace L of Rm all of whose translates v + L (v ∈ Rm) meet A in only finitely many points.

(Hint: proceed by induction on m− k.)

The case m − k = 1 is the theorem. In the case m − k = n + 1, first apply the theorem to get

a line, L1, all of whose translates meet A at finitely many points. Then consider A + L1, that is

{x | x = l+ a, l ∈ L1, a ∈ A}. This has dimension dim(A) + 1 ≤ k+ 1, so by induction, there is an L′,

m− k − 1-dimensional linear subspace whose translates intersect A+ L1 in only finitely many points,

and thus L = L1 + L′ is an m − k-dimensional linear subspace whose translates intersect A in only

finitely many points.

7.4.3.3. In this exercise, assume that R is an ordered field, not necessarily real closed.

Let A ⊆ Rm be semilinear with dim(A) < m. Show that A is contained in a finite union of affine

subspaces of Rm of dimension < m, and derive that there is a good direction for A, that is, a nonzero

vector u ∈ Rm such that each line p+Ru (p ∈ Rm) intersects A in only finitely many points.

Removing the inequalities from the definition of A, we have that A will be contained in a finite

union of affine subspaces. Since inequalities correspond to open sets and therefore do not decrease

the dimension, these affine subspaces will all have dimension < m. Any vector not in the span of the

vectors giving the affine subspace will hit the subspace at only finitely many (in fact, 0 or 1) points for

any translation. We can find a vector not in the span of any of the subspaces’ vectors by induction.

Let A1, . . . , An+1 be affine subspaces, with Ai = Vi +wi, for Vi a vector subspace and wi some vector.

Suppose we have found v not in V1, . . . , Vn. Assume v ∈ Vn+1. Since dim(Vn+1) < m, there is u /∈ Vn+1.

Then v+ tu /∈ Vn+1 for any t ∈ R. For each Vi, i ≤ n, if u ∈ Vi, then v+ tu will not be in Vi. If u /∈ Vi,

then simple linear algebra shows that v + tu ∈ Vi for only finitely many values of t. Thus, we can find

t such that v + tu /∈ Vi for i ≤ n+ 1, and this vector will be a good direction for A.
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