Math 1B Final Exam, August 12 2011, 2:10pm-4:00pm

The full exam is worth 100 points. In each of problems 5-7, you have a choice of two problems to do. However, doing the second problem will only get you 8 points, not the full 16. If you do the first problem, you will end up solving the second problem along the way in any case. In each of problems 5-7, you must indicate which of the problems I should grade, or I will only grade the first one.

Justify all answers and show all work. Clearly mark where your answer is written on your papers.

- 1. (10 pts) Use Euler's method to approximate the value of y(1) with step size 1/2 where y satisfies the differential equation $y' = x/y^2$ and y(0) = 1.
 - $F(x,y) = x/y^2$. We have $x_0 = 0$ and $y_0 = 1$, so F(0,1) = 0. Then $x_1 = 1/2$ and $y_1 = 1$, so F(1/2,1) = 1/2. Then $x_2 = 1$ and $y_1 = 5/4$, so our estimate is 5/4.
- 2. (10 pts) A tank contains 1000 L of pure water. Brine that contains 0.05 kg of salt per liter of water enters the tank at a rate of 5 L/min. The tank is thoroughly mixed and drains at the rate of 5 L/min. Fully derive the concentration of salt in the tank after t minutes.
 - Let y(t) be the amount of salt in the tank at time t. The rate of change of salt in the tank is given by $5 \cdot 0.05 5y/1000$, so y' = 0.25 y/200. We can rewrite this equation as $y' = \frac{1}{4}(1 y/50)$. It is separable, so we write $\frac{dy}{1 y/50} = \frac{dt}{4}$, in the case that $y \neq 50$. Then $\int \frac{dy}{1 y/50} = \int \frac{dt}{4}$, so $-\ln|1 y/50| = t/4 + C$, for C an arbitrary constant. Negating and exponentiating both sides, we have $|1 y/50| = e^{-C}e^{-t/4}$, so $y/50 = 1 De^{-t/4}$ where D is an arbitrary nonzero constant. Then $y(t) = 50 De^{-t/4}$. Since y(0) = 0, we have D = 50, so the amount of salt in the tank after t minutes is $50 50e^{-t/4}$ and so the concentration is $\frac{1}{200}(1 e^{-t/4})$.
- 3. (10 pts) Is the error in using $1 + 1/4 + 1/9 + \ldots + 1/99^2$ as the approximation to $\sum_{i=1}^{\infty} \frac{1}{n^2}$ less than 10^{-5} ? Justify your answer!
 - Since the function $f(x)=1/x^2$ is decreasing, positive, and continuous, and $f(n)=1/n^2$, we can use the remainder estimate for the integral test, which says that the remainder from using 99 terms is bounded below by $\int_{100}^{\infty} dx/x^2 = \lim_{t\to\infty} -1/t (-1/100) = 10^{-2}$, which is not less than 10^{-5} .
- 4. (12 pts) A 2 kg mass is attached to a spring with spring constant 4. The force on the mass exerted by the spring is then -4x, where x is the displacement of the mass from its equilibrium position. The system is immersed in a fluid with damping constant 4, so the force on the mass exerted by the fluid is -4v, where v is the velocity of the mass. Recall that the velocity v of the mass is the rate of change of the position x of the mass, the acceleration a of the mass is the rate of change of the velocity v, and the total force on the mass is equal to ma. Do both of the following parts:
 - (a) Derive the general formula for the motion of the mass as a function of t. F = -4x 4v and F = 2a, so 2a = -4x 4v and then x'' + 2x' + 2x = 0. This is a homogeneous good and a linear differential equation with constant as efficients, so we always the captiline.
 - neous second-order linear differential equation with constant coefficients, so we solve the auxiliary equation $r^2 + 2r + 2 = 0$ to get $r_1 = -1 + \sqrt{-4}/2$ and $r_2 = -1 \sqrt{-16}/2$. Since r_1, r_2 are complex, we know that we can write a general solution to the differential equation in the form $e^{-t}(c_1\cos(t) + c_2\sin(t))$.
 - (b) If at time t = 0 the mass is at the equilibrium and at time $t = \pi$ the mass has velocity $4/e^2$, find the position of the mass at any time t.
 - Using the result from the first part, $0 = x(0) = c_1$, and $4/e^2 = x'(1) = e^{-1}(c_2\cos(1) c_2\sin(1)) = c_2(e^{-1}(\cos(1) \sin(1))$, so $c_2 = 4/(\cos(1) \sin(1))$. Thus, the position of the mass at time t is $4e^{-t}\sin(t)/(\cos(1) \sin(1))$.

5. Find all solutions to the differential equation $y'' - 2y' + y = \frac{e^x x^2}{x^2 - 1}$.

The solutions to the complementary equation are $y_1=e^x$ and $y_2=xe^x$. Thus, the particular solution we are looking for is $y_p=u_1y_1+u_2y_2$, for some functions u_1,u_2 . We want such functions satisfying the two equations $u_1'y_1+u_2'y_2=0$ and $a(u_1'y_1'+u_2'y_2')=G(x)$ with in this case $y_1=e^x, y_2=xe^x, a=1$, and $G(x)=\frac{e^xx^2}{x^2-1}$. Then we have $u_1'e^x+u_2'xe^x=0$ and $u_1'e^x+u_2'(x+1)e^x=\frac{e^xx^2}{x^2-1}$. Subtracting the first equation from the second, we get $u_2'e^x=\frac{e^xx^2}{x^2-1}$, and so $u_2'=\frac{x^2}{x^2-1}$. Then $u_2=\int \frac{x^2dx}{x^2-1}$, which is $\int dx+\int \frac{dx}{x^2-1}$. The polynomial x^2-1 factors as (x-1)(x+1), and so we can write $1/(x^2-1)=A/(x-1)+B)/(x+1)=\frac{Ax+Bx+A-B}{x^2-1}$, so A+B=0, A-B=1. This means 2A=1 so A=1/2, B=-1/2. Then we have $\int \frac{dx}{x^2-1}=\frac{1}{2}(\int dx/(x-1)-\int dx/(x+1)$. The first integral equals $(\ln|x-1|)/2$. The second is $-(\ln|x+1|)/2$, so the full integral is $\frac{1}{2}\ln|\frac{x-1}{x+1}|$, so $u_2=x+\frac{1}{2}\ln|\frac{x-1}{x+1}|$. Substituting $\frac{x^2}{x^2-1}$ back into the first equation in place of u_2' , we have $u_1'e^x+\frac{x^3e^x}{x^2-1}=0$, so $u_1'=-\frac{x^3}{x^2-1}$. Then $u_1=-\int \frac{x^3dx}{x^2-1}$. We can write x^3 as x^3-x+x , so this integral is $-\int \frac{(x^3-x+x)dx}{x^2-1}=-\int xdx-\int \frac{xdx}{x^2-1}$. The second integral is $\ln|x^2-1|/2$, and the first is $x^2/2$. Thus our particular solution is

$$-(x^2 + \ln|x^2 - 1|)e^x/2 + (x + \frac{1}{2}\ln|\frac{x - 1}{x + 1}|)xe^x$$

and the general solution is

$$-\ln|x^2 - 1|e^x/2 + (x + \ln|\frac{x - 1}{x + 1}|)xe^x/2 + c_1e^x + c_2xe^x.$$

6. (16 pts) Let y be the function satisfying the equation xy'' - y = 0, with y'(0) = 1. Evaluate y(-0.1) to within 10^{-4} .

Suppose that y can be written as a power series, $\sum_{n=0}^{\infty} c_n x^n$. Then $y'' = \sum_{n=2}^{\infty} n(n-1)c_n x^{n-2}$, so $xy'' - y = \sum_{n=2} n(n-1)c_n x^{n-1} - \sum_{n=0}^{\infty} c_n x^n = \sum_{n=1} (n+1)nc_{n+1}x^n - \sum_{n=0} c_n x^n = 0$, so $c_0 + \sum_{n=1} ((n+1)nc_{n+1} - c_n)x^n = 0$, and so $c_0 = 0$ and $(n+1)nc_{n+1} = c_n$, so $c_{n+1} = \frac{c_n}{n(n+1)}$. We write out the first few terms of y(x): $c_1x + c_1x^2/2 + \frac{c_1x^3}{3\cdot 2^2} + \frac{c_1x^4}{4\cdot 3^2\cdot 2^2} + \dots$ At $0, y'(0) = c_1 = 1$. Thus, $y(-0.1) = \sum_{n=1}^{\infty} \frac{(-1)^n 10^{-n}}{n((n-1)!)^2}$, which is an alternating series, with terms decreasing toward 0 in absolute value, so if we can find a term less than 10^{-4} in absolute value, we can evaluate up to that term, by the remainder theorem for alternating series. When n=3, we have $10^{-3}/(3\cdot 2^2) < 10^{-4}$, so we can take $-0.1 + 0.1^2/2 = -0.1 + 0.005 = -0.095$.

7. Solve the differential equation $x^2y' + 2xy = \cos^2 x$.

We recognize the left-hand side of this equation as being $(x^2y)'$, so we have $(x^2y)' = \cos^2 x$. Then $x^2y = \int \cos^2 x dx = \int \frac{1+\cos(2x)}{2} dx = x/2 + \sin(2x)/4 + C$, so $y = \frac{1}{2x} + \frac{\sin x \cos x}{2x} + \frac{C}{x^2}$.

8. (10 pts) A parabolic satellite dish is formed by rotating the curve $y = ax^2$ about the y-axis. The dish has a 10-ft diameter, and is 2 ft deep at its center. Find the value of a and the surface area of the dish. Since the diameter is 10 feet, the maximum value of x is 5, and so since y = 2 when x = 5, we have a = 2/25. Then the surface area of the dish is given by

$$\int_0^5 2\pi x \sqrt{1 + (2ax)^2} dx = \int_0^5 x \sqrt{1 + 4a^2 x^2} dx.$$

Letting $u = 1 + 4a^2x^2$, we have $du = 8a^2xdx$, and so the integral becomes

$$\frac{\pi}{4a^2} \int \sqrt{u} du = \frac{\pi}{6a^2} u^{3/2} = \frac{\pi}{6a^2} (1 + 4a^2 x^2)^{3/2},$$

which we evaluate at x=0 and x=5, yielding $\frac{625\pi}{6\cdot4}((1+25\cdot16/625)^{3/2}-1)=\frac{625\pi}{24}(\frac{41\sqrt{41}}{125}-\frac{125}{125})=\frac{5\pi}{24}(41\sqrt{41}-125)$.